如何在 R 中的变量的每个级别内找到归一化值
How to find the normalized values within each level of a variable in R
我有一个具有 3 个级别 1、2、3 的分类变量 B 我还有另一个具有一些值的变量 A.. 示例数据如下
A B
22 1
23 1
12 1
34 1
43 2
47 2
49 2
65 2
68 3
70 3
75 3
82 3
120 3
. .
. .
. .
. .
我只想说对于 B 的每个级别(比如 1)我需要计算 Val(A)-Min/Max-Min,同样我需要将相同的内容复制到其他级别(2 和 3)
您可以使用 tapply
函数:
x = read.table(text="A B
22 1
23 1
12 1
34 1
43 2
47 2
49 2
65 2
68 3
70 3
75 3
82 3
120 3", header = TRUE)
y = tapply(x$A, x$B, function(z) (z - min(z)) / (max(z) - min(z)))
# Or using the scale() function
#y = tapply(x$A, x$B, function(z) scale(z, min(z), max(z) - min(z)))
cbind(x, unlist(y))
不确定您想要怎样的输出,但这应该是一个不错的起点。
使用dplyr
的解决方案:
set.seed(1)
df=data.frame(A=round(rnorm(21,50,10)),B=rep(1:3,each=7))
library(dplyr)
df %>% group_by(B) %>% mutate(C= (A-min(A))/(max(A)-min(A)))
输出就像
# A tibble: 21 x 3
# Groups: B [3]
A B C
<dbl> <int> <dbl>
1 44 1 0.0833
2 52 1 0.417
3 42 1 0
4 66 1 1
5 53 1 0.458
6 42 1 0
7 55 1 0.542
8 57 2 0.784
9 56 2 0.757
10 47 2 0.514
# ... with 11 more rows
我有一个具有 3 个级别 1、2、3 的分类变量 B 我还有另一个具有一些值的变量 A.. 示例数据如下
A B
22 1
23 1
12 1
34 1
43 2
47 2
49 2
65 2
68 3
70 3
75 3
82 3
120 3
. .
. .
. .
. .
我只想说对于 B 的每个级别(比如 1)我需要计算 Val(A)-Min/Max-Min,同样我需要将相同的内容复制到其他级别(2 和 3)
您可以使用 tapply
函数:
x = read.table(text="A B
22 1
23 1
12 1
34 1
43 2
47 2
49 2
65 2
68 3
70 3
75 3
82 3
120 3", header = TRUE)
y = tapply(x$A, x$B, function(z) (z - min(z)) / (max(z) - min(z)))
# Or using the scale() function
#y = tapply(x$A, x$B, function(z) scale(z, min(z), max(z) - min(z)))
cbind(x, unlist(y))
不确定您想要怎样的输出,但这应该是一个不错的起点。
使用dplyr
的解决方案:
set.seed(1)
df=data.frame(A=round(rnorm(21,50,10)),B=rep(1:3,each=7))
library(dplyr)
df %>% group_by(B) %>% mutate(C= (A-min(A))/(max(A)-min(A)))
输出就像
# A tibble: 21 x 3
# Groups: B [3]
A B C
<dbl> <int> <dbl>
1 44 1 0.0833
2 52 1 0.417
3 42 1 0
4 66 1 1
5 53 1 0.458
6 42 1 0
7 55 1 0.542
8 57 2 0.784
9 56 2 0.757
10 47 2 0.514
# ... with 11 more rows