sklearn2pmml error : expected zero arguments for construction of ClassDict (for pandas._libs.interval.Interval)
sklearn2pmml error : expected zero arguments for construction of ClassDict (for pandas._libs.interval.Interval)
我在训练 LR 模型时使用 sklearn2pmml.preprocessing.CutTransformer 和 sklearn.preprocessing.LabelEncoder 对目标进行了编码。
这是我的代码:
from sklearn2pmml.preprocessing import CutTransformer
from sklearn.preprocessing.label import LabelEncoder
income_bins = [-np.inf, 10000, 50000, 100000, 300000, 500000, 1000000, 3000000, 5000000, 10000000, np.inf]
targetDiscretizer = PMMLPipeline([('target',
DataFrameMapper([
(['income'], [CutTransformer(bins=income_bins), LabelEncoder()])
])
)])
dataset['target_income_lvl'] = targetDiscretizer.fit_transform(dataset)
sklearn2pmml(targetDiscretizer, '../model/targetDiscretizer.pmml', with_repr=True )
但我收到一条错误消息:
net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for pandas._libs.interval.Interval)
at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:732)
at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:200)
at net.razorvine.pickle.Unpickler.load(Unpickler.java:122)
at numpy.core.NDArrayUtil.readObject(NDArrayUtil.java:384)
at numpy.core.NDArrayUtil.access0(NDArrayUtil.java:42)
at numpy.core.NDArrayUtil$TypeDescriptor.read(NDArrayUtil.java:542)
at numpy.core.NDArrayUtil.parseArray(NDArrayUtil.java:215)
at numpy.core.NDArrayUtil.parseData(NDArrayUtil.java:190)
at joblib.NumpyArrayWrapper.toArray(NumpyArrayWrapper.java:43)
at org.jpmml.sklearn.PickleUtil.dispatch(PickleUtil.java:88)
at net.razorvine.pickle.Unpickler.load(Unpickler.java:122)
at org.jpmml.sklearn.PickleUtil.unpickle(PickleUtil.java:98)
at org.jpmml.sklearn.Main.run(Main.java:104)
at org.jpmml.sklearn.Main.main(Main.java:94)
Exception in thread "main" net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for pandas._libs.interval.Interval)
at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:732)
at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:200)
at net.razorvine.pickle.Unpickler.load(Unpickler.java:122)
at numpy.core.NDArrayUtil.readObject(NDArrayUtil.java:384)
at numpy.core.NDArrayUtil.access0(NDArrayUtil.java:42)
at numpy.core.NDArrayUtil$TypeDescriptor.read(NDArrayUtil.java:542)
at numpy.core.NDArrayUtil.parseArray(NDArrayUtil.java:215)
at numpy.core.NDArrayUtil.parseData(NDArrayUtil.java:190)
at joblib.NumpyArrayWrapper.toArray(NumpyArrayWrapper.java:43)
at org.jpmml.sklearn.PickleUtil.dispatch(PickleUtil.java:88)
at net.razorvine.pickle.Unpickler.load(Unpickler.java:122)
at org.jpmml.sklearn.PickleUtil.unpickle(PickleUtil.java:98)
at org.jpmml.sklearn.Main.run(Main.java:104)
at org.jpmml.sklearn.Main.main(Main.java:94)
我不知道这个。有人可以帮助我吗?
默认情况下,Python pickle 文件的 Java 解析器不知道非标准 CPython classes,例如 pandas._libs.interval.Interval
.需要每个CPythonclass分别示教。例如,在 SkLearn2PMML issue tracker 中有一个相关的错误报告:https://github.com/jpmml/sklearn2pmml/issues/115
如果您(至少暂时地)设法抑制 pandas._libs.interval.Interval
对象的生成,转换应该会起作用。最有可能的来源是自动生成的 bin 标签。因此,尝试使用 labels
参数显式提供 bin 标签:CutTransformer(bins = income_bins, labels = income_bin_labels)
.
我在训练 LR 模型时使用 sklearn2pmml.preprocessing.CutTransformer 和 sklearn.preprocessing.LabelEncoder 对目标进行了编码。
这是我的代码:
from sklearn2pmml.preprocessing import CutTransformer
from sklearn.preprocessing.label import LabelEncoder
income_bins = [-np.inf, 10000, 50000, 100000, 300000, 500000, 1000000, 3000000, 5000000, 10000000, np.inf]
targetDiscretizer = PMMLPipeline([('target',
DataFrameMapper([
(['income'], [CutTransformer(bins=income_bins), LabelEncoder()])
])
)])
dataset['target_income_lvl'] = targetDiscretizer.fit_transform(dataset)
sklearn2pmml(targetDiscretizer, '../model/targetDiscretizer.pmml', with_repr=True )
但我收到一条错误消息:
net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for pandas._libs.interval.Interval)
at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:732)
at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:200)
at net.razorvine.pickle.Unpickler.load(Unpickler.java:122)
at numpy.core.NDArrayUtil.readObject(NDArrayUtil.java:384)
at numpy.core.NDArrayUtil.access0(NDArrayUtil.java:42)
at numpy.core.NDArrayUtil$TypeDescriptor.read(NDArrayUtil.java:542)
at numpy.core.NDArrayUtil.parseArray(NDArrayUtil.java:215)
at numpy.core.NDArrayUtil.parseData(NDArrayUtil.java:190)
at joblib.NumpyArrayWrapper.toArray(NumpyArrayWrapper.java:43)
at org.jpmml.sklearn.PickleUtil.dispatch(PickleUtil.java:88)
at net.razorvine.pickle.Unpickler.load(Unpickler.java:122)
at org.jpmml.sklearn.PickleUtil.unpickle(PickleUtil.java:98)
at org.jpmml.sklearn.Main.run(Main.java:104)
at org.jpmml.sklearn.Main.main(Main.java:94)
Exception in thread "main" net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for pandas._libs.interval.Interval)
at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:732)
at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:200)
at net.razorvine.pickle.Unpickler.load(Unpickler.java:122)
at numpy.core.NDArrayUtil.readObject(NDArrayUtil.java:384)
at numpy.core.NDArrayUtil.access0(NDArrayUtil.java:42)
at numpy.core.NDArrayUtil$TypeDescriptor.read(NDArrayUtil.java:542)
at numpy.core.NDArrayUtil.parseArray(NDArrayUtil.java:215)
at numpy.core.NDArrayUtil.parseData(NDArrayUtil.java:190)
at joblib.NumpyArrayWrapper.toArray(NumpyArrayWrapper.java:43)
at org.jpmml.sklearn.PickleUtil.dispatch(PickleUtil.java:88)
at net.razorvine.pickle.Unpickler.load(Unpickler.java:122)
at org.jpmml.sklearn.PickleUtil.unpickle(PickleUtil.java:98)
at org.jpmml.sklearn.Main.run(Main.java:104)
at org.jpmml.sklearn.Main.main(Main.java:94)
我不知道这个。有人可以帮助我吗?
默认情况下,Python pickle 文件的 Java 解析器不知道非标准 CPython classes,例如 pandas._libs.interval.Interval
.需要每个CPythonclass分别示教。例如,在 SkLearn2PMML issue tracker 中有一个相关的错误报告:https://github.com/jpmml/sklearn2pmml/issues/115
如果您(至少暂时地)设法抑制 pandas._libs.interval.Interval
对象的生成,转换应该会起作用。最有可能的来源是自动生成的 bin 标签。因此,尝试使用 labels
参数显式提供 bin 标签:CutTransformer(bins = income_bins, labels = income_bin_labels)
.