找不到就地操作:梯度计算所需的变量之一已被就地操作修改

can't find the inplace operation: one of the variables needed for gradient computation has been modified by an inplace operation

我正在尝试计算网络雅可比的损失(即执行双反向传播),但出现以下错误: RuntimeError:梯度计算所需的变量之一已被就地操作修改

我在我的代码中找不到 inplace 操作,所以我不知道要修复哪一行。

*错误出现在最后一行: loss3.backward()

            inputs_reg = Variable(data, requires_grad=True)
            output_reg = self.model.forward(inputs_reg)

            num_classes = output.size()[1]
            jacobian_list = []
            grad_output = torch.zeros(*output_reg.size())

            if inputs_reg.is_cuda:
                grad_output = grad_output.cuda()
                jacobian_list = jacobian.cuda()

            for i in range(10):

                zero_gradients(inputs_reg)
                grad_output.zero_()
                grad_output[:, i] = 1
                jacobian_list.append(torch.autograd.grad(outputs=output_reg,
                                                  inputs=inputs_reg,
                                                  grad_outputs=grad_output,
                                                  only_inputs=True,
                                                  retain_graph=True,
                                                  create_graph=True)[0])


            jacobian = torch.stack(jacobian_list, dim=0)
            loss3 = jacobian.norm()
            loss3.backward()

grad_output.zero_() 就位,grad_output[:, i-1] = 0 也就位。就地意味着 "modify a tensor instead of returning a new one, which has the modifications applied"。一个不就地的示例解决方案是 torch.where。用于将第一列置零的示例

import torch
t = torch.randn(3, 3)
ixs = torch.arange(3, dtype=torch.int64)
zeroed = torch.where(ixs[None, :] == 1, torch.tensor(0.), t)

zeroed
tensor([[-0.6616,  0.0000,  0.7329],
        [ 0.8961,  0.0000, -0.1978],
        [ 0.0798,  0.0000, -1.2041]])

t
tensor([[-0.6616, -1.6422,  0.7329],
        [ 0.8961, -0.9623, -0.1978],
        [ 0.0798, -0.7733, -1.2041]])

注意 t 如何保留它之前的值,而 zeroed 有你想要的值。

谢谢! 我将 grad_output 中 inplace 操作的有问题的代码替换为:

            inputs_reg = Variable(data, requires_grad=True)
            output_reg = self.model.forward(inputs_reg)
            num_classes = output.size()[1]

            jacobian_list = []
            grad_output = torch.zeros(*output_reg.size())

            if inputs_reg.is_cuda:
                grad_output = grad_output.cuda()

            for i in range(5):
                zero_gradients(inputs_reg)

                grad_output_curr = grad_output.clone()
                grad_output_curr[:, i] = 1
                jacobian_list.append(torch.autograd.grad(outputs=output_reg,
                                                         inputs=inputs_reg,
                                                         grad_outputs=grad_output_curr,
                                                         only_inputs=True,
                                                         retain_graph=True,
                                                         create_graph=True)[0])

            jacobian = torch.stack(jacobian_list, dim=0)
            loss3 = jacobian.norm()
            loss3.backward()

您可以使用 set_detect_anomaly function available in autograd 包来准确找到导致错误的行。

这里是link,它描述了相同的问题和使用上述功能的解决方案。