Sparklyr/Dplyr - 如何为 sparkdata 帧的每一行应用用户定义的函数并将每一行的输出写入新列?

Sparklyr/Dplyr - How to apply a user defined function for each row of a sparkdata frame and create write the output of each row to new column?

我有一个 spark_tbl 包含 160 多列。

我将举例说明数据框的外观:

Key  A  B  C  D  E  F  G .....Z

s1   0  1  0  1  1  0  1      0
s2   1  0  0  0  0  0  0      0
s3   1  1  0  0  0  0  0      0
s4   0  1  0  1  1  0  0      0

我想要实现的是根据每列的值创建一个新列,

Key  A  B  C  D  E  F  G .....Z  panel

s1   0  1  0  1  1  0  1      0  B,D,E,G
s2   1  0  0  0  0  0  0      0  A 
s3   1  1  0  0  0  0  0      0  A,B
s4   0  1  0  1  1  0  0      0  B,D,E

按行检查每一列,如果值为 1,则将列名添加到字符串中,最后将其写入名为 panel 的列。

我尝试编写用户定义的函数:

get_panel <- function(eachrow){
 id <- ""
 row_list <- as.list(eachrow)
 for (i in 1:length(row_list)){
  if(row_list[i] == "1"){
   if(id == ""){
     id = columns[i+1]
   }else{
     id = paste(id, ",", columns[i+1])
   }
  }
 }
return(id)
}

这适用于使用应用功能的常规数据框。 但是,

如何将此函数应用于 Spark Dataframe 或 tbl_spark?

查看此 Scala 解决方案。

scala> val df = Seq(("s1",0,1,0,1,1,0,1),
     | ("s2",1,0,0,0,0,0,0),
     | ("s3",1,1,0,0,0,0,0),
     | ("s4",0,1,0,1,1,0,0)).toDF("key","A","B","C","D","E","F","G")
df: org.apache.spark.sql.DataFrame = [key: string, A: int ... 6 more fields]

scala> df.show
+---+---+---+---+---+---+---+---+
|key|  A|  B|  C|  D|  E|  F|  G|
+---+---+---+---+---+---+---+---+
| s1|  0|  1|  0|  1|  1|  0|  1|
| s2|  1|  0|  0|  0|  0|  0|  0|
| s3|  1|  1|  0|  0|  0|  0|  0|
| s4|  0|  1|  0|  1|  1|  0|  0|
+---+---+---+---+---+---+---+---+

scala> val columns = df.columns.filter(x=>x != "key")
columns: Array[String] = Array(A, B, C, D, E, F, G)

scala> val p1 = columns.map( x => when(col(x)===lit(1),x+",").otherwise(lit(""))).reduce(concat(_,_)).as("panel")
p1: org.apache.spark.sql.Column = concat(concat(concat(concat(concat(concat(CASE WHEN (A = 1) THEN A, ELSE  END, CASE WHEN (B = 1) THEN B, ELSE  END), CASE WHEN (C = 1) THEN C, ELSE  END), CASE WHEN (D = 1) THEN D, ELSE  END), CASE WHEN (E = 1) THEN E, ELSE  END), CASE WHEN (F = 1) THEN F, ELSE  END), CASE WHEN (G = 1) THEN G, ELSE  END) AS `panel`

scala> df.select(p1).show(false)
+--------+
|panel   |
+--------+
|B,D,E,G,|
|A,      |
|A,B,    |
|B,D,E,  |
+--------+

对于所有列,

scala> df.select(col("*"), p1).show
+---+---+---+---+---+---+---+---+--------+
|key|  A|  B|  C|  D|  E|  F|  G|   panel|
+---+---+---+---+---+---+---+---+--------+
| s1|  0|  1|  0|  1|  1|  0|  1|B,D,E,G,|
| s2|  1|  0|  0|  0|  0|  0|  0|      A,|
| s3|  1|  1|  0|  0|  0|  0|  0|    A,B,|
| s4|  0|  1|  0|  1|  1|  0|  0|  B,D,E,|
+---+---+---+---+---+---+---+---+--------+

结果中有尾随逗号。可以通过

删除
scala> df.select(col("*"), regexp_replace(p1,",$","").as("panel")).show
+---+---+---+---+---+---+---+---+-------+
|key|  A|  B|  C|  D|  E|  F|  G|  panel|
+---+---+---+---+---+---+---+---+-------+
| s1|  0|  1|  0|  1|  1|  0|  1|B,D,E,G|
| s2|  1|  0|  0|  0|  0|  0|  0|      A|
| s3|  1|  1|  0|  0|  0|  0|  0|    A,B|
| s4|  0|  1|  0|  1|  1|  0|  0|  B,D,E|
+---+---+---+---+---+---+---+---+-------+


scala> 

编辑2:

A more cleaner approach would be to use just array() function with concat_ws

scala> val df = Seq(("s1",0,1,0,1,1,0,1),("s2",1,0,0,0,0,0,0),("s3",1,1,0,0,0,0,0),("s4",0,1,0,1,1,0,0)).toDF("key","A","B","C","D","E","F","G")
df: org.apache.spark.sql.DataFrame = [key: string, A: int ... 6 more fields]

scala> df.show(false)
+---+---+---+---+---+---+---+---+
|key|A  |B  |C  |D  |E  |F  |G  |
+---+---+---+---+---+---+---+---+
|s1 |0  |1  |0  |1  |1  |0  |1  |
|s2 |1  |0  |0  |0  |0  |0  |0  |
|s3 |1  |1  |0  |0  |0  |0  |0  |
|s4 |0  |1  |0  |1  |1  |0  |0  |
+---+---+---+---+---+---+---+---+


scala> val p1 = columns.map( x => when(col(x)===lit(1),x).otherwise(null))
p1: Array[org.apache.spark.sql.Column] = Array(CASE WHEN (A = 1) THEN A ELSE NULL END, CASE WHEN (B = 1) THEN B ELSE NULL END, CASE WHEN (C = 1) THEN C ELSE NULL END, CASE WHEN (D = 1) THEN D ELSE NULL END, CASE WHEN (E = 1) THEN E ELSE NULL END, CASE WHEN (F = 1) THEN F ELSE NULL END, CASE WHEN (G = 1) THEN G ELSE NULL END)

scala> df.select(col("*"),array(p1:_*).alias("panel")).withColumn("panel2",concat_ws(",",'panel)).show(false)
+---+---+---+---+---+---+---+---+----------------+-------+
|key|A  |B  |C  |D  |E  |F  |G  |panel           |panel2 |
+---+---+---+---+---+---+---+---+----------------+-------+
|s1 |0  |1  |0  |1  |1  |0  |1  |[, B,, D, E,, G]|B,D,E,G|
|s2 |1  |0  |0  |0  |0  |0  |0  |[A,,,,,,]       |A      |
|s3 |1  |1  |0  |0  |0  |0  |0  |[A, B,,,,,]     |A,B    |
|s4 |0  |1  |0  |1  |1  |0  |0  |[, B,, D, E,,]  |B,D,E  |
+---+---+---+---+---+---+---+---+----------------+-------+


scala>

不确定这是否会将 100% 转换为 sparklyr,但您可以使用 sdf_nest:

library(tidyverse)

mat <- matrix(c(paste0("s", 1:4), as.numeric(sample(0:1, 4 * 26, TRUE))), ncol = 27)
colnames(mat) <- c("Key", LETTERS[1:26])

df <- data.frame(mat, stringsAsFactors = FALSE) %>%
  mutate_at(vars(-"Key"), as.numeric) %>%
  as_data_frame()
df
#> # A tibble: 4 x 27
#>   Key       A     B     C     D     E     F     G     H     I     J     K
#>   <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 s1        0     1     1     1     1     0     0     0     0     1     1
#> 2 s2        0     1     0     1     0     1     1     1     1     0     0
#> 3 s3        0     1     1     1     1     0     0     0     0     1     1
#> 4 s4        0     0     0     1     0     0     0     1     1     0     1
#> # ... with 15 more variables: L <dbl>, M <dbl>, N <dbl>, O <dbl>, P <dbl>,
#> #   Q <dbl>, R <dbl>, S <dbl>, T <dbl>, U <dbl>, V <dbl>, W <dbl>,
#> #   X <dbl>, Y <dbl>, Z <dbl>

df %>%
  group_by(Key) %>%
  nest() %>%
  mutate(panel = map_chr(data, ~ unlist(.) %>% as.logical %>% names(df)[-1][.] %>% paste(collapse = ",")))
#> # A tibble: 4 x 3
#>   Key   data              panel                           
#>   <chr> <list>            <chr>                          
#> 1 s1    <tibble [1 x 26]> B,C,D,E,J,K,L,M,N,O,P,Q,R,W,Y,Z
#> 2 s2    <tibble [1 x 26]> B,D,F,G,H,I,N,R,S,T,V,W,X,Z    
#> 3 s3    <tibble [1 x 26]> B,C,D,E,J,K,M,N,O,Q,R,S,T,V,X,Y
#> 4 s4    <tibble [1 x 26]> D,H,I,K,L,O,P,T,U,V,W,Z

我认为@JasonAizkalns 走在正确的轨道上。从他的例子开始:

library(dplyr)
library(sparklyr)
sc <- spark_connect(master = "local")


mat <- matrix(c(paste0("s", 1:4), as.numeric(sample(0:1, 4 * 26, TRUE))), ncol = 27)
colnames(mat) <- c("Key", LETTERS[1:26])

df <- data.frame(mat, stringsAsFactors = FALSE) %>%
  mutate_at(vars(-"Key"), as.numeric) %>%
  as_data_frame()
df

dfs <- copy_to(sc, df, overwrite = TRUE)

我们可以使用一点 rlang 魔法到达那里。

dfs <- dfs %>% mutate(panel = "")
for (letter in LETTERS[1:26]) {
  dfs <- dfs %>% mutate(panel = concat_ws(",", panel, ifelse(!!sym(letter) == 1.0, yes = letter, no = NA)))
}

dfs %>% 
  mutate(panel = regexp_replace(panel, "^,", "")) %>% # remove leading comma
  select(Key, A:D, panel)

提供我认为您想要的

# Source: spark<?> [?? x 6]
  Key       A     B     C     D panel                           
* <chr> <dbl> <dbl> <dbl> <dbl> <chr>                           
1 s1        0     0     1     1 C,D,E,G,O,P,Q,U,Z              
2 s2        1     0     0     1 A,D,G,K,L,M,N,Q,S,U,W          
3 s3        0     1     0     0 B,E,L,M,O,Q,R,S,T,Y            
4 s4        1     1     0     1 A,B,D,E,G,I,J,M,N,R,S,T,U,V,Y,Z

这里的关键是 concat_ws Spark SQL(不是 R)函数。参见 https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/functions.html#concat_ws-java.lang.String-org.apache.spark.sql.Column...-