Hyperopt:重新运行时更改最佳参数

Hyperopt: Optimal parameter changing with rerun

我正在尝试使用贝叶斯优化 (Hyperopt) 来获得 SVM 算法的最佳参数。但是,我发现最佳参数随着每个 运行.

而变化

下面提供的是一个简单的可重现案例。你能对此有所了解吗?

import numpy as np 
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials

from sklearn.svm import SVC
from sklearn import svm, datasets
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV, cross_val_score
from sklearn.model_selection import StratifiedShuffleSplit

iris = datasets.load_iris()
X = iris.data[:, :2] 
y = iris.target

def hyperopt_train_test(params):
    clf = svm.SVC(**params)
    return cross_val_score(clf, X, y).mean()

space4svm = {
    'C': hp.loguniform('C', -3, 3),
    'gamma': hp.loguniform('gamma', -3, 3),
}

def f(params):
    acc = hyperopt_train_test(params)
    return {'loss': -acc, 'status': STATUS_OK}

trials = Trials()

best = fmin(f, space4svm, algo=tpe.suggest, max_evals=1000, trials=trials)

print ('best:')
print (best)

以下是一些最优值。

最佳:{'C':0.08776548401545513,'gamma':1.447360198193232}

最佳:{'C':0.23621788050791617,'gamma':1.2467882092108042}

最佳:{'C':0.3134163250819116,'gamma':1.0984778155489887}

那是因为在执行 fmin 期间,hyperopt 从定义的搜索 space 中抽取了 'C''gamma' 的不同值 space4cvm 在程序的每个 运行 期间随机。

要解决此问题并产生确定性结果,您需要使用 'rstate' param of fmin:

rstate :

    numpy.RandomState, default numpy.random or `$HYPEROPT_FMIN_SEED`

    Each call to `algo` requires a seed value, which should be different
    on each call. This object is used to draw these seeds via `randint`.
    The default rstate is numpy.random.RandomState(int(env['HYPEROPT_FMIN_SEED']))
    if the 'HYPEROPT_FMIN_SEED' environment variable is set to a non-empty
    string, otherwise np.random is used in whatever state it is in.

因此,如果未明确设置,默认情况下它将检查环境变量 'HYPEROPT_FMIN_SEED' 是否已设置。如果没有,那么每次都会使用一个随机数。

您可以通过以下方式使用它:

rstate = np.random.RandomState(42)   #<== Use any number here but fixed

best = fmin(f, space4svm, algo=tpe.suggest, max_evals=100, trials=trials, rstate=rstate)