在 R / Rcpp 中转置列表的最快方法

Fastest way to transpose a list in R / Rcpp

我有一个列表:

ls <- list(c("a", "b", "c"), c("1", "2", "3"), c("foo", "bar", "baz"))
ls

#> [[1]]
#> [1] "a" "b" "c"

#> [[2]]
#> [1] "1" "2" "3"

#> [[3]]
#> [1] "foo" "bar" "baz"

我希望"transpose"给予:

resulting_ls

#> [[1]]
#> [1] "a"   "1"   "foo"

#> [[2]]
#> [1] "b"   "2"   "bar"

#> [[3]]
#> [1] "c"   "3"   "baz"

我可以通过以下方式实现:

mat <- matrix(unlist(ls), ncol = 3, byrow = TRUE)
resulting_ls <- lapply(1:ncol(mat), function(i) mat[, i])

但是我的真实数据非常慢...(我需要对许多列表执行此操作,每个列表都比上面的示例大得多)

我的问题:

对于大型列表,执行此操作的最快方法是什么 length(ls) and/or length(ls[[i]])

  1. in R(如果情况并非如此)
  2. Rcpp

data.table 包中,有一个 transpose() 函数可以做到这一点。它在 C 中实现以提高速度。

require(data.table) # v1.9.6+
transpose(ls)
# [[1]]
# [1] "a"   "1"   "foo"

# [[2]]
# [1] "b"   "2"   "bar"

# [[3]]
# [1] "c"   "3"   "baz"

如果列表元素的长度不相等,它还会自动填充 NA,并且还会自动强制转换为最高的 SEXPTYPE。如有必要,您可以为 fill 参数提供不同的值。检查 ?transpose.

"list"s 是没有 C 等效项的 R 对象,因此在 C 中操作它们只会在周围计算方面获得效率,因为实际的转置需要在 R 对象之间来回。 Arun 的 transpose 是解决此问题的简洁方法,而且似乎再好不过了。我将提供一些其他的替代方案,只是为了表明转置 "list" 可能会很古怪,也许采用不同的方法来实现最终目标可能会更好。

map = function(x) .mapply(c, x, NULL)

lap = function(x) lapply(seq_along(x[[1]]), function(i) unlist(lapply(x, "[[", i)))

library(data.table)
DT = function(x) transpose(x)

# very simple C loop that proves that `data.table::transpose` is as good as it gets
loopC = inline::cfunction(sig = c(R_ls = "list"), body = '
    SEXPTYPE tp = 0;
    SEXP ans, tmp;
    PROTECT(ans = allocVector(VECSXP, LENGTH(VECTOR_ELT(R_ls, 0))));
    for(int i = 0; i < LENGTH(R_ls); i++) {
        tmp = VECTOR_ELT(R_ls, i);
        if(TYPEOF(tmp) > tp) tp = TYPEOF(tmp);
    }
    for(int i = 0; i < LENGTH(ans); i++) SET_VECTOR_ELT(ans, i, allocVector(tp, LENGTH(R_ls)));

    switch(tp) {
        case LGLSXP:
        case INTSXP: {
            for(int i = 0; i < LENGTH(R_ls); i++) {
                PROTECT(tmp = coerceVector(VECTOR_ELT(R_ls, i), tp));
                int *ptmp = INTEGER(tmp);
                for(int j = 0; j < LENGTH(ans); j++) INTEGER(VECTOR_ELT(ans, j))[i] = ptmp[j];
                UNPROTECT(1);
            }

            break;
        }
        case REALSXP: {
            for(int i = 0; i < LENGTH(R_ls); i++) {
                PROTECT(tmp = coerceVector(VECTOR_ELT(R_ls, i), tp));
                double *ptmp = REAL(tmp);
                for(int j = 0; j < LENGTH(ans); j++) REAL(VECTOR_ELT(ans, j))[i] = ptmp[j];
                UNPROTECT(1);
            }

            break;
        }
        case STRSXP: {
            for(int i = 0; i < LENGTH(R_ls); i++) {
                PROTECT(tmp = coerceVector(VECTOR_ELT(R_ls, i), tp));
                for(int j = 0; j < LENGTH(ans); j++) SET_STRING_ELT(VECTOR_ELT(ans, j), i, STRING_ELT(tmp, j));
                UNPROTECT(1);
            }

            break;
        }
    }

    UNPROTECT(1);
    return(ans);
')

spl = function(x) split(unlist(x), rep(seq_along(x[[1]]), length(x)))

map(ls)
#[[1]]
#[1] "a"   "1"   "foo"
#
#[[2]]
#[1] "b"   "2"   "bar"
#
#[[3]]
#[1] "c"   "3"   "baz"
#
lap(ls)
#[[1]]
#[1] "a"   "1"   "foo"
#
#[[2]]
#[1] "b"   "2"   "bar"
#
#[[3]]
#[1] "c"   "3"   "baz"
#
DT(ls)
#[[1]]
#[1] "a"   "1"   "foo"
#
#[[2]]
#[1] "b"   "2"   "bar"
#
#[[3]]
#[1] "c"   "3"   "baz"
#
loopC(ls)
#[[1]]
#[1] "a"   "1"   "foo"
#
#[[2]]
#[1] "b"   "2"   "bar"
#
#[[3]]
#[1] "c"   "3"   "baz"
#
spl(ls)
#$`1`
#[1] "a"   "1"   "foo"
#
#$`2`
#[1] "b"   "2"   "bar"
#
#$`3`
#[1] "c"   "3"   "baz"

还有一个基准:

myls1 = rep_len(list(sample(1e3), runif(1e3), sample(letters, 1e3, T)), 1e3)  #1e3 x 1e3
myls2 = rep_len(list(sample(1e5), runif(1e5), sample(letters, 1e5, T)), 1e1)  #10 x 1e5
myls3 = rep_len(list(sample(1e1), runif(1e1), sample(letters, 1e1, T)), 1e5)  #1e5 x 10

identical(map(myls1), lap(myls1))
#[1] TRUE
identical(map(myls1), DT(myls1))
#[1] TRUE
identical(map(myls1), loopC(myls1))
#[1] TRUE
identical(map(myls1), unname(spl(myls1)))
#[1] TRUE

microbenchmark::microbenchmark(map(myls1), lap(myls1), DT(myls1), loopC(myls1), spl(myls1),
                                map(myls2), lap(myls2), DT(myls2), loopC(myls2), spl(myls2),
                                map(myls3), lap(myls3), DT(myls3), loopC(myls3), spl(myls3), 
                                times = 10)
#Unit: milliseconds
#         expr       min        lq    median        uq       max neval
#   map(myls1) 1141.9477 1187.8107 1281.4314 1331.4490 1961.8452    10
#   lap(myls1) 1082.7023 1104.6467 1182.8303 1219.5397 1695.6164    10
#    DT(myls1)  378.0574  399.7339  433.4307  459.0293  495.2200    10
# loopC(myls1)  390.0305  392.5139  405.6461  480.7480  638.9145    10
#   spl(myls1)  676.2639  756.1798  786.8639  821.7699  869.0219    10
#   map(myls2) 1241.1010 1304.2250 1386.1915 1439.5182 1546.3835    10
#   lap(myls2) 1823.2029 1922.1878 1965.6653 2006.6102 2161.9819    10
#    DT(myls2)  471.5797  521.7380  554.2221  578.3043  887.1452    10
# loopC(myls2)  472.5713  494.9302  524.2538  591.0493  657.6087    10
#   spl(myls2) 1108.1530 1117.7448 1212.0051 1297.8838 1336.8266    10
#   map(myls3) 2005.1325 2178.3739 2214.1824 2451.7050 2539.5152    10
#   lap(myls3) 1172.3033 1215.1297 1242.0294 1292.7345 1434.1707    10
#    DT(myls3)  388.6679  393.5446  416.5494  479.1473  721.0758    10
# loopC(myls3)  389.4098  396.6768  404.9609  432.4390  451.8912    10
#   spl(myls3)  675.7749  704.3328  767.0548  817.7189  937.1469    10

还有collapse::t_list。在对@alexis_laz的数据进行计时时,似乎只比data.table::transpose:

慢了一点点
microbenchmark::microbenchmark(transpose(myls1), t_list(myls1),
                               transpose(myls2), t_list(myls2),
                               transpose(myls3), t_list(myls3), times = 10)
Unit: milliseconds
             expr      min       lq     mean   median       uq      max neval
 transpose(myls1) 436.6397 441.3445 451.1324 448.5867 458.2563 475.3357    10
    t_list(myls1) 450.9826 455.6178 463.0933 457.0395 472.9860 487.6187    10
 transpose(myls2) 519.2504 522.1071 541.8283 538.9593 551.2684 587.8375    10
    t_list(myls2) 570.2164 593.7727 615.3212 609.3971 637.4703 667.4535    10
 transpose(myls3) 424.6462 426.9211 448.7534 436.2498 458.3884 511.8618    10
    t_list(myls3) 458.9503 463.6034 497.4220 496.6448 512.9335 575.0476    10 

这里有两个基本的 R 选项

f_asplit <- function(x) asplit(do.call(rbind, x), 2)
f_split <- function(x) split(unlist(x), sequence(lengths(x)))

当运行

f_DT <- function(x) transpose(x)
f_asplit <- function(x) asplit(do.call(rbind, x), 2)
f_split <- function(x) split(unlist(x), sequence(lengths(x)))
microbenchmark(
  f_DT(myls1),
  f_asplit(myls1),
  f_split(myls1),
  f_DT(myls2),
  f_asplit(myls2),
  f_split(myls2),
  f_DT(myls3),
  f_asplit(myls3),
  f_split(myls3),
  times = 10
)

你会看到

Unit: milliseconds
            expr      min       lq     mean   median       uq      max neval
     f_DT(myls1) 484.3706 496.1017 527.5104 504.3836 538.3450 623.4342    10
 f_asplit(myls1) 502.1010 525.0664 541.2588 545.2604 553.6868 576.6521    10
  f_split(myls1) 506.6380 526.0220 563.3163 544.7467 567.0422 685.8991    10
     f_DT(myls2) 605.1234 632.6032 679.1095 647.2061 690.4973 873.7956    10
 f_asplit(myls2) 827.3669 844.2319 870.9969 874.4586 889.0711 936.3875    10
  f_split(myls2) 839.3327 854.0782 883.0190 875.9137 906.0532 957.9787    10
     f_DT(myls3) 446.2920 455.3569 482.9587 467.3739 491.2713 593.4374    10
 f_asplit(myls3) 506.3268 523.0180 577.8359 573.9360 618.5669 662.0888    10
  f_split(myls3) 478.5380 496.5128 519.4187 507.3265 546.4502 592.4853    10