如何在 sklearn 中使用自定义评分功能 cross_val_score
How to use custom scoring function in sklearn cross_val_score
我想在 cross_val_score
函数中使用 Adjusted Rsquare。我尝试使用 make_scorer
函数,但它不起作用。
from sklearn.cross_validation import train_test_split
X_tr, X_test, y_tr, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
regression = LinearRegression(normalize=True)
from sklearn.metrics.scorer import make_scorer
from sklearn.metrics import r2_score
def adjusted_rsquare(y_true,y_pred):
adjusted_r_squared = 1 - (1-r2_score(y_true, y_pred))*(len(y_pred)-1)/(len(y_pred)-X_test.shape[1]-1)
return adjusted_r_squared
my_scorer = make_scorer(adjusted_rsquare, greater_is_better=True)
score = np.mean(cross_val_score(regression, X_tr, y_tr, scoring=my_scorer,cv=crossvalidation, n_jobs=1))
报错:
IndexError: positional indexers are out-of-bounds
有什么方法可以使用我的自定义函数吗? adjusted_rsquare
和 cross_val_score
?
adjusted_rsquare(X,Y)
是一个数字,它不是函数,只需像这样创建得分手:
my_scorer = make_scorer(adjusted_rsquare, greater_is_better=True)
您还需要change the score function:
def adjusted_rsquare(y_true, y_pred, **kwargs):
这就是您应该使用的原型。您将实际结果与应有的结果进行比较。
我想在 cross_val_score
函数中使用 Adjusted Rsquare。我尝试使用 make_scorer
函数,但它不起作用。
from sklearn.cross_validation import train_test_split
X_tr, X_test, y_tr, y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
regression = LinearRegression(normalize=True)
from sklearn.metrics.scorer import make_scorer
from sklearn.metrics import r2_score
def adjusted_rsquare(y_true,y_pred):
adjusted_r_squared = 1 - (1-r2_score(y_true, y_pred))*(len(y_pred)-1)/(len(y_pred)-X_test.shape[1]-1)
return adjusted_r_squared
my_scorer = make_scorer(adjusted_rsquare, greater_is_better=True)
score = np.mean(cross_val_score(regression, X_tr, y_tr, scoring=my_scorer,cv=crossvalidation, n_jobs=1))
报错:
IndexError: positional indexers are out-of-bounds
有什么方法可以使用我的自定义函数吗? adjusted_rsquare
和 cross_val_score
?
adjusted_rsquare(X,Y)
是一个数字,它不是函数,只需像这样创建得分手:
my_scorer = make_scorer(adjusted_rsquare, greater_is_better=True)
您还需要change the score function:
def adjusted_rsquare(y_true, y_pred, **kwargs):
这就是您应该使用的原型。您将实际结果与应有的结果进行比较。