NA 序列的最小值和最大值

Min and max of NA sequences

我有一个数据框,其中 foo 列包含 运行 个 NA 值序列。例如:

> test
   id  foo                time
1   1 <NA> 2018-11-19 00:00:48
2   1 <NA> 2018-11-19 00:10:51
3   1 <NA> 2018-11-19 00:21:15
4   1 <NA> 2018-11-19 00:31:02
5   1    x 2018-11-19 00:40:59
6   1    x 2018-11-19 00:50:49
7   1    x 2018-11-19 01:01:15
8   1 <NA> 2018-11-19 01:11:07
9   1 <NA> 2018-11-19 01:20:49
10  2 <NA> 2018-11-19 01:30:50
11  2 <NA> 2018-11-19 01:40:43
12  2    x 2018-11-19 01:50:46
13  2    x 2018-11-19 02:01:02
14  2    x 2018-11-19 02:10:44
15  2 <NA> 2018-11-19 02:20:51
16  2 <NA> 2018-11-19 02:31:06
17  2 <NA> 2018-11-19 02:40:42
18  2 <NA> 2018-11-19 02:50:45
19  3 <NA> 2018-11-19 03:01:00
20  3 <NA> 2018-11-19 03:10:42
21  3 <NA> 2018-11-19 03:21:10
22  3 <NA> 2018-11-19 03:31:10
23  3    x 2018-11-19 03:40:44
24  3 <NA> 2018-11-19 03:50:46
25  3 <NA> 2018-11-19 04:00:46
例如,

我的 objective 是标记每个序列从 idtime 开始的位置 - 上面的数据集会有一个名为 index 的额外列,它标记在哪里这些 NA 值的开始和结束是。然而,id 系列中的最后一个 NA 应该被忽略,单个 NA 值将被标记为 "both"。例如:

> test
   id  foo                time     index
1   1 <NA> 2018-11-19 00:00:48 na_starts
2   1 <NA> 2018-11-19 00:10:51          
3   1 <NA> 2018-11-19 00:21:15          
4   1 <NA> 2018-11-19 00:31:02   na_ends
5   1    x 2018-11-19 00:40:59          
6   1    x 2018-11-19 00:50:49          
7   1    x 2018-11-19 01:01:15          
8   1 <NA> 2018-11-19 01:11:07 na_starts
9   1 <NA> 2018-11-19 01:20:49          
10  2 <NA> 2018-11-19 01:30:50 na_starts
11  2 <NA> 2018-11-19 01:40:43   na_ends
12  2    x 2018-11-19 01:50:46          
13  2    x 2018-11-19 02:01:02          
14  2    x 2018-11-19 02:10:44          
15  2 <NA> 2018-11-19 02:20:51 na_starts
16  2 <NA> 2018-11-19 02:31:06          
17  2 <NA> 2018-11-19 02:40:42          
18  2 <NA> 2018-11-19 02:50:45          
19  3 <NA> 2018-11-19 03:01:00          
20  3 <NA> 2018-11-19 03:10:42 na_starts
21  3 <NA> 2018-11-19 03:21:10          
22  3 <NA> 2018-11-19 03:31:10   na_ends
23  3    x 2018-11-19 03:40:44          
24  3 <NA> 2018-11-19 03:50:46      both
25  3    x 2018-11-19 04:00:46   

如何使用 rle 或 R 中的类似函数实现这一目标?

 dput(test)
structure(list(id = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3), foo = c(NA, NA, NA, NA, 
"x", "x", "x", NA, NA, NA, NA, "x", "x", "x", NA, NA, NA, NA, 
NA, NA, NA, NA, "x", NA, "x"), time = structure(c(1542585648, 
1542586251, 1542586875, 1542587462, 1542588059, 1542588649, 1542589275, 
1542589867, 1542590449, 1542591050, 1542591643, 1542592246, 1542592862, 
1542593444, 1542594051, 1542594666, 1542595242, 1542595845, 1542596460, 
1542597042, 1542597670, 1542598270, 1542598844, 1542599446, 1542600046
), class = c("POSIXct", "POSIXt"), tzone = "UTC")), row.names = c(NA, 
-25L), class = "data.frame")

也许这会奏效?我不完全确定 time 与问题有什么关系,除了我认为你希望它按 idtime.

排序
library("tidyverse")                                                                                                                                            -25L), class = "data.frame")
test = test %>% 
  arrange(id, time) %>% 
  mutate(miss = is.na(foo))

# This will make the index column for a single run
mark_ends = function(n, miss){
  if(!miss){
    rep("", times = n)
  }
  else{
    if(n == 1){"both"}
    else(c("na_starts", rep("", times = (n-2)), "na_ends"))}
}

# This will use mark_ends across a single ID
mark_index = function(id){
   runs = test$miss[test$id == id] %>% 
     rle
  result = Map(f = mark_ends, n = runs$lengths, miss = runs$values) %>% 
    reduce(.f = c)
  result[length(result)] = ""
  result
}

# use the function on each id, combine, and put it in test
test$index = unique(test$id) %>% 
  map(mark_index) %>% 
  reduce(.f = c)

使用 tidyversedata.table 你可以:

df %>%
 rowid_to_column() %>%
 group_by(id, temp = rleid(foo)) %>%
 mutate(temp2 = seq_along(temp),
        index = ifelse(is.na(foo) & temp2 == min(temp2) & temp2 == max(temp2), paste0("both"), 
                       ifelse(is.na(foo) & temp2 == min(temp2), paste0("na_starts"), 
                              ifelse(is.na(foo) & temp2 == max(temp2), paste0("na_ends"), NA)))) %>%
 group_by(id) %>%
 mutate(index = ifelse(rowid == max(rowid[is.na(foo) & max(temp) & max(temp2)]) & 
                         is.na(lag(foo)), NA, index)) %>%
 select(-temp, -temp2, -rowid)

      id foo   time                index    
   <dbl> <chr> <dttm>              <chr>    
 1    1. <NA>  2018-11-19 00:00:48 na_starts
 2    1. <NA>  2018-11-19 00:10:51 <NA>     
 3    1. <NA>  2018-11-19 00:21:15 <NA>     
 4    1. <NA>  2018-11-19 00:31:02 na_ends  
 5    1. x     2018-11-19 00:40:59 <NA>     
 6    1. x     2018-11-19 00:50:49 <NA>     
 7    1. x     2018-11-19 01:01:15 <NA>     
 8    1. <NA>  2018-11-19 01:11:07 na_starts
 9    1. <NA>  2018-11-19 01:20:49 <NA>     
10    2. <NA>  2018-11-19 01:30:50 na_starts
11    2. <NA>  2018-11-19 01:40:43 na_ends  
12    2. x     2018-11-19 01:50:46 <NA>     
13    2. x     2018-11-19 02:01:02 <NA>     
14    2. x     2018-11-19 02:10:44 <NA>     
15    2. <NA>  2018-11-19 02:20:51 na_starts
16    2. <NA>  2018-11-19 02:31:06 <NA>     
17    2. <NA>  2018-11-19 02:40:42 <NA>     
18    2. <NA>  2018-11-19 02:50:45 <NA>     
19    3. <NA>  2018-11-19 03:01:00 na_starts
20    3. <NA>  2018-11-19 03:10:42 <NA>     
21    3. <NA>  2018-11-19 03:21:10 <NA>     
22    3. <NA>  2018-11-19 03:31:10 na_ends  
23    3. x     2018-11-19 03:40:44 <NA>     
24    3. <NA>  2018-11-19 03:50:46 both     
25    3. x     2018-11-19 04:00:46 <NA> 

首先,它正在创建一个唯一的行 ID。其次,它按 "id" 和 "foo" 的 运行 长度分组。第三,它围绕 "foo" 的 运行 长度进行排序。第四,它使用给定条件创建 "index" 变量。然后,它按 "id" 分组并将 NA 分配给每个 id 缺失的 "foo" 序列的最后一行。最后,它删除了冗余变量。

使用的可能解决方案:

library(data.table)
setDT(test)

ind <- test[, .(ri = unique(.I[c(1,.N)][all(is.na(foo))]))
            , by = .(id, rl = rleid(is.na(foo)))
            ][, index := list("both",c("na_starts","na_ends"))[[1 + (.N > 1)]]
              , by = .(id, rl)][]

test[ind$ri, index := ind$index
     ][test[, .I[.N], by = id]$V1, index := NA][]

给出:

> test
    id  foo                time     index
 1:  1 <NA> 2018-11-19 00:00:48 na_starts
 2:  1 <NA> 2018-11-19 00:10:51      <NA>
 3:  1 <NA> 2018-11-19 00:21:15      <NA>
 4:  1 <NA> 2018-11-19 00:31:02   na_ends
 5:  1    x 2018-11-19 00:40:59      <NA>
 6:  1    x 2018-11-19 00:50:49      <NA>
 7:  1    x 2018-11-19 01:01:15      <NA>
 8:  1 <NA> 2018-11-19 01:11:07 na_starts
 9:  1 <NA> 2018-11-19 01:20:49      <NA>
10:  2 <NA> 2018-11-19 01:30:50 na_starts
11:  2 <NA> 2018-11-19 01:40:43   na_ends
12:  2    x 2018-11-19 01:50:46      <NA>
13:  2    x 2018-11-19 02:01:02      <NA>
14:  2    x 2018-11-19 02:10:44      <NA>
15:  2 <NA> 2018-11-19 02:20:51 na_starts
16:  2 <NA> 2018-11-19 02:31:06      <NA>
17:  2 <NA> 2018-11-19 02:40:42      <NA>
18:  2 <NA> 2018-11-19 02:50:45      <NA>
19:  3 <NA> 2018-11-19 03:01:00 na_starts
20:  3 <NA> 2018-11-19 03:10:42      <NA>
21:  3 <NA> 2018-11-19 03:21:10      <NA>
22:  3 <NA> 2018-11-19 03:31:10   na_ends
23:  3    x 2018-11-19 03:40:44      <NA>
24:  3 <NA> 2018-11-19 03:50:46      both
25:  3    x 2018-11-19 04:00:46      <NA>