如何从 python 中混合使用 alpha_2 和 alpha_3 ccodes 中的国家/地区缩写获取国家/地区名称

How to get country name from country abbreviation in python with mix of alpha_2 and alpha_3 ccodes

我有一个数据框如下:

df = pd.DataFrame({"country_code": ['AF', 'BEL', 'AUS', 'DE', 'IND', 'US', 'GBR'],
              "amount": [100, 200, 140, 400, 225, 125, 600]})

国家代码列混合了 2 个字母和 3 个字母的国家/地区缩写。

任何人都可以帮助我如何在同一个 df 的新列中获取完整的国家/地区名称吗?

首先,您应该通过在命令提示符中键入 pip install pycountry 安装软件包 pycountry,然后按 enter

import pycountry
import pycountry
df = pd.DataFrame({"country_code": ['AF', 'BEL', 'AUS', 'DE', 'IND', 'US', 'GBR','XYZ'],
              "amount": [100, 200, 140, 400, 225, 125, 600,0]})

list_alpha_2 = [i.alpha_2 for i in list(pycountry.countries)]
list_alpha_3 = [i.alpha_3 for i in list(pycountry.countries)]    

def country_flag(df):
    if (len(df['country_code'])==2 and df['country_code'] in list_alpha_2):
        return pycountry.countries.get(alpha_2=df['country_code']).name
    elif (len(df['country_code'])==3 and df['country_code'] in list_alpha_3):
        return pycountry.countries.get(alpha_3=df['country_code']).name
    else:
        return 'Invalid Code'

df['country_name']=df.apply(country_flag, axis = 1)
df
   amount country_code    country_name
0     100           AF     Afghanistan
1     200          BEL         Belgium
2     140          AUS       Australia
3     400           DE         Germany
4     225          IND           India
5     125           US   United States
6     600          GBR  United Kingdom
7       0          XYZ    Invalid Code

考虑到你有数据集,或者你可以通过pycountry,你可以使用以下方法来处理它。

import pycountry
new_df = df['country-code'].apply(lambda x: pycountry.countries.get(alpha_3=x).name if len(x) == 3 else pycountry.countries.get(alpha_2=x).name)
print new_df

这会打印:

new_df
0       Afghanistan
1           Belgium
2         Australia
3           Germany
4             India
5     United States
6    United Kingdom
Name: country_code, dtype: object

现在,考虑到您拥有长度为 2 和长度为 3 的代码的 csv,如下所示:

 df2
  code           name
0   AF    Afghanistan
1   DE        Germany
2   US  United States

df3
  code            name
0  BEL         Belgium
1  AUS       Australia
2  IND           India
3  GBR  United Kingdom

在此之后,您执行以下步骤:

>>> new_df2 = df.merge(df2, left_on='country_code', right_on='code')
>>> new_df2
   amount country_code code           name
0     100           AF   AF    Afghanistan
1     400           DE   DE        Germany
2     125           US   US  United States
>>> new_df3 = df.merge(df3, left_on='country_code', right_on='code')
>>> new_df3
   amount country_code code            name
0     200          BEL  BEL         Belgium
1     140          AUS  AUS       Australia
2     225          IND  IND           India
3     600          GBR  GBR  United Kingdom
>>> df23 = pd.concat([new_df2, new_df3])
>>> df23.reset_index(inplace=True)
>>> df23.drop('index', inplace=True, axis=1)
>>> df23
   amount country_code code            name
0     100           AF   AF     Afghanistan
1     400           DE   DE         Germany
2     125           US   US   United States
3     200          BEL  BEL         Belgium
4     140          AUS  AUS       Australia
5     225          IND  IND           India
6     600          GBR  GBR  United Kingdom