创建一个带有面部标志检测的 numpy 数组的文本文件。?

Create an text file with numpy array of facial lanmark detection.?

我正在尝试制作一个具有面部特征检测代码的面部交换应用程序。但是,由于我是编程界的新手,所以我的代码比需要的要长。我知道,有一些简短的方法可以做到,我只是不知道怎么做。所以。这是我的代码:

predictor_path = "C:\Users\G7K4\Desktop\FinalFaceSwap\shape_predictor_68_face_landmarks.dat"
filepath1 =  "C:\Users\G7K4\Desktop\FinalFaceSwap\Image\nil.jpg"

image1 = cv2.imread(filepath1)


detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_path) 
dets1 = detector(image1)

for k, d in enumerate(dets1):
shape = predictor(img1, d)
#Detect 68 facial landmark points
vec = np.empty([68, 2], dtype = int)
for b in range(68):
    vec[b][0] = shape.part(b).x
    vec[b][1] = shape.part(b).y

#write the detected file in text file
with open("Model1.txt","w") as file:
    for i in range(len(vec)):
        outer=""
        outer += str(vec[i])
        file.write(outer)
        file.write("\n")

#read the text file and remove the brackets
with open("Model1.txt","r") as my_file:
    text=my_file.read()
    text= text.replace("[","")
    text= text.replace("]","")

#again write the file. 
with open("Model1.txt","w") as file:
    file.write(text)

#function for reading points from text file
def readPoints(path) :
    # Create an array of points.
    points = [];

    # Read points
    with open(path) as file :
        for line in file :
            x, y = line.split()
            points.append((int(x), int(y)))
    return points

所以,在这里,我需要检测面部标志并直接读取它,以便它可以用于换脸。或者,如果无法完成,我需要检测面部标志并将其立即写入不带括号的文本文件,这样我就不必两次读写文本文件并删除括号。

有一个名为 imutils 的包用于处理 dlib 面部标志。 运行 pip install imutils 安装它。这是做到这一点的捷径

from imutils import face_utils

shape = predictor(img1, d)
shape = face_utils.shape_to_np(shape)

# access the x-coordinate point 20 
x_20 = shape[20][0]

# access the y-coordinate point 54 
y_54 = shape[54][1]

你确实需要用文本格式编写numpy矩阵数据,稍后去掉括号。相反,numpy 已经提供了 np.save() and np.load() 用于序列化和反序列化目的的方法。

我会在这里为您提供一个示例,另外将您的读取和写入功能封装在单独的方法中是一个很好的做法,这样当您更改 reading/writing 逻辑时,您不需要扫描整个代码。

创建随机面部特征点:

facial_points = np.zeros((68, 2), dtype=np.uint8)

# Fill in some absurd values:
for i in xrange(68):
    facial_points[i] = np.asarray([i, i%10])

读写数据的实用方法:

def serialize_feature_points(feature_points, file_path):
    np.save(file_path, feature_points)


def deserialize_feature_points(file_path):
    return np.load(file_path)

采取一些行动的时间:

serialize_feature_points(facial_points, "feature_points1.npy")
print deserialize_feature_points("feature_points1.npy")

[[ 0  0]
 [ 1  1]
 [ 2  2]
 .... 
 [65  5]
 [66  6]
 [67  7]]