c ++ Boost循环通过model::point的维度
c ++ Boost Loop through dimensions of model::point
我想知道是否有一种方法可以遍历提升点模型的维度。我正在尝试创建一个函数来对两个自定义点进行计算,具有可定义的维数。换句话说,每个点的维数将匹配,但它们不会是一个常量值。我想在每个维度上做相同的操作,所以我需要做一个循环来实现这个。
我想做的事情的一个例子是:
for(std::size_t dim = 0; dim < D; dim++){
CoordinateType d = get<dim>();
//do stuff to d
set<dim>(d);
}
我知道这行不通,因为 d
不是编译时常量。
谢谢!
我对 boost geometry 不是很熟悉,但似乎你必须在编译时遍历坐标。做到这一点的方法是创建一个递归。下面的 class apply
将执行这样的递归并在点的每个坐标上调用一个函子。
你所要做的就是编写你自己的仿函数并重载它的 operator() 以防你想要专门针对特定坐标的行为。下面示例中的仿函数简单地打印坐标,并在读取第 3 个坐标时专门化。
#include <boost/geometry.hpp>
#include <iostream>
#include <type_traits>
namespace bg = boost::geometry;
template <int I>
using int_ = std::integral_constant<int, I>;
//recursive call that iterates the point and calls F on its coordinate
template <class Point, class F, std::size_t I = 0>
struct apply {
static void call(Point& point, F& f) {
f(point, int_<I>());
apply<Point, F, I+1>::call(point, f);
}
};
//specialisation to end the recursion
template <class CT, std::size_t DIM, class S, template <class, std::size_t, class> class Point, class F>
struct apply<Point<CT, DIM, S>, F, DIM> {
static void call(Point<CT, DIM, S>& point, F& f){}
};
//interface for calling the function
template <class Point, class F>
void apply_functor(Point& point, F& f) {
apply<Point, F>::call(point, f);
}
//example functor
template <class Point>
struct functor {
template <class Index>
void operator()(Point& point, Index I) {
std::cout << "I am coordinate " << Index::value << " and my value is " << bg::get<Index::value>(point) << std::endl;
}
// used for overloading when reading the 3rd coordinate
void operator()(Point& point, int_<2>) {
std::cout << "I am coordinate " << 2 << " and I am specialised with value " << bg::get<2>(point) << std::endl;
}
};
//3-dimensional point type
using point_type = bg::model::point<double, 3, bg::cs::cartesian>;
int main(int argc, char** argv) {
point_type point(1,2,3);
functor<point_type> f;
apply_functor(point, f);
return 0;
}
作为替代方法,我认为您应该能够将 Boost Geometry 点模型调整为 Fusion 序列。
#include <iostream>
namespace bg = boost::geometry;
namespace fus = boost::fusion;
int main() {
bg::model::point<double, 7, bg::cs::cartesian> p1;
// set some nice values
p1.set<0>(7); p1.set<1>(14); p1.set<2>(21); p1.set<3>(28);
p1.set<4>(35); p1.set<5>(42); p1.set<6>(49);
fus::for_each(fus::as_vector(p1), [](double x) { std::cout << x << ' '; });
}
版画
7 14 21 28 35 42 49
这是非常通用的(并且会为您提供比 for_each
更多的算法)。在示例中,我并没有一路走下去,所以你实际上可以说 for_each(p1, f)
而不是 for_each(as_vector(p1), f)
但你知道...... reader.
的谚语练习
这里涉及一些扩展 "glue" 代码。我只是按照文档 here
在此处查看完整清单:
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/geometries/point.hpp>
#include <boost/fusion/include/for_each.hpp>
#include <boost/fusion/include/as_vector.hpp>
namespace bg_to_fusion {
using namespace boost;
struct bg_point_tag;
struct example_struct_iterator_tag;
template<typename Point, int Pos>
struct point_iterator
: fusion::iterator_base<point_iterator<Point, Pos> >
{
BOOST_STATIC_ASSERT(Pos >=0 && Pos <geometry::traits::dimension<typename remove_cv<Point>::type>::value);
typedef Point point_type;
typedef mpl::int_<Pos> index;
//typedef fusion::random_access_traversal_tag category;
typedef fusion::forward_traversal_tag category;
point_iterator(Point& p) : point_(p) {}
Point& point_;
};
}
namespace boost { namespace fusion {
// tag dispatch
namespace traits {
template <typename T, size_t dims, typename cs>
struct tag_of<geometry::model::point<T, dims, cs> > {
typedef bg_to_fusion::bg_point_tag type;
};
template <typename Point, int Pos>
struct tag_of<bg_to_fusion::point_iterator<Point, Pos> > {
typedef bg_to_fusion::example_struct_iterator_tag type;
};
}
namespace extension {
//////////////////////////////////////////////////////
// Point extension implementations
template<>
struct is_sequence_impl<bg_to_fusion::bg_point_tag>
{
template<typename T>
struct apply : mpl::true_ {};
};
template <>
struct size_impl<bg_to_fusion::bg_point_tag> {
template <typename Point>
struct apply : mpl::integral_c<size_t, geometry::traits::dimension<typename remove_cv<Point>::type>::value> { };
};
// begin
template<>
struct begin_impl<bg_to_fusion::bg_point_tag>
{
template<typename Point>
struct apply
{
typedef typename bg_to_fusion::point_iterator<Point, 0> type;
static type
call(Point& p)
{
return type(p);
}
};
};
// end
template<>
struct end_impl<bg_to_fusion::bg_point_tag>
{
template<typename Point> struct apply {
typedef typename bg_to_fusion::point_iterator<Point, geometry::traits::dimension<Point>::value> type;
static type call(Point& p) {
return type(p);
}
};
};
////////////////////////
// Iterator extension implementations
// value_of
template <>
struct value_of_impl<bg_to_fusion::example_struct_iterator_tag> {
template<typename Iterator> struct apply;
template<typename Point, int Pos>
struct apply<bg_to_fusion::point_iterator<Point, Pos> > {
typedef typename geometry::traits::coordinate_type<typename remove_cv<Point>::type>::type type;
};
};
// deref
template<>
struct deref_impl<bg_to_fusion::example_struct_iterator_tag>
{
template<typename Iterator>
struct apply;
template<typename Point, int Pos>
struct apply<bg_to_fusion::point_iterator<Point, Pos> >
{
typedef typename geometry::traits::coordinate_type<typename remove_cv<Point>::type>::type coordinate_type;
//typedef typename mpl::if_<is_const<Point>, coordinate_type const&, coordinate_type&>::type type;
typedef coordinate_type type;
static type
call(bg_to_fusion::point_iterator<Point, Pos> const& it) {
return it.point_.template get<Pos>();
}
};
};
// next
template<>
struct next_impl<bg_to_fusion::example_struct_iterator_tag> {
template<typename Iterator> struct apply
{
typedef typename Iterator::point_type point_type;
typedef typename Iterator::index index;
typedef typename bg_to_fusion::point_iterator<point_type, index::value + 1> type;
static type
call(Iterator const& i) {
return type(i.point_);
}
};
};
}
} }
我想知道是否有一种方法可以遍历提升点模型的维度。我正在尝试创建一个函数来对两个自定义点进行计算,具有可定义的维数。换句话说,每个点的维数将匹配,但它们不会是一个常量值。我想在每个维度上做相同的操作,所以我需要做一个循环来实现这个。
我想做的事情的一个例子是:
for(std::size_t dim = 0; dim < D; dim++){
CoordinateType d = get<dim>();
//do stuff to d
set<dim>(d);
}
我知道这行不通,因为 d
不是编译时常量。
谢谢!
我对 boost geometry 不是很熟悉,但似乎你必须在编译时遍历坐标。做到这一点的方法是创建一个递归。下面的 class apply
将执行这样的递归并在点的每个坐标上调用一个函子。
你所要做的就是编写你自己的仿函数并重载它的 operator() 以防你想要专门针对特定坐标的行为。下面示例中的仿函数简单地打印坐标,并在读取第 3 个坐标时专门化。
#include <boost/geometry.hpp>
#include <iostream>
#include <type_traits>
namespace bg = boost::geometry;
template <int I>
using int_ = std::integral_constant<int, I>;
//recursive call that iterates the point and calls F on its coordinate
template <class Point, class F, std::size_t I = 0>
struct apply {
static void call(Point& point, F& f) {
f(point, int_<I>());
apply<Point, F, I+1>::call(point, f);
}
};
//specialisation to end the recursion
template <class CT, std::size_t DIM, class S, template <class, std::size_t, class> class Point, class F>
struct apply<Point<CT, DIM, S>, F, DIM> {
static void call(Point<CT, DIM, S>& point, F& f){}
};
//interface for calling the function
template <class Point, class F>
void apply_functor(Point& point, F& f) {
apply<Point, F>::call(point, f);
}
//example functor
template <class Point>
struct functor {
template <class Index>
void operator()(Point& point, Index I) {
std::cout << "I am coordinate " << Index::value << " and my value is " << bg::get<Index::value>(point) << std::endl;
}
// used for overloading when reading the 3rd coordinate
void operator()(Point& point, int_<2>) {
std::cout << "I am coordinate " << 2 << " and I am specialised with value " << bg::get<2>(point) << std::endl;
}
};
//3-dimensional point type
using point_type = bg::model::point<double, 3, bg::cs::cartesian>;
int main(int argc, char** argv) {
point_type point(1,2,3);
functor<point_type> f;
apply_functor(point, f);
return 0;
}
作为替代方法,我认为您应该能够将 Boost Geometry 点模型调整为 Fusion 序列。
#include <iostream>
namespace bg = boost::geometry;
namespace fus = boost::fusion;
int main() {
bg::model::point<double, 7, bg::cs::cartesian> p1;
// set some nice values
p1.set<0>(7); p1.set<1>(14); p1.set<2>(21); p1.set<3>(28);
p1.set<4>(35); p1.set<5>(42); p1.set<6>(49);
fus::for_each(fus::as_vector(p1), [](double x) { std::cout << x << ' '; });
}
版画
7 14 21 28 35 42 49
这是非常通用的(并且会为您提供比 for_each
更多的算法)。在示例中,我并没有一路走下去,所以你实际上可以说 for_each(p1, f)
而不是 for_each(as_vector(p1), f)
但你知道...... reader.
这里涉及一些扩展 "glue" 代码。我只是按照文档 here
在此处查看完整清单:
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/geometries/point.hpp>
#include <boost/fusion/include/for_each.hpp>
#include <boost/fusion/include/as_vector.hpp>
namespace bg_to_fusion {
using namespace boost;
struct bg_point_tag;
struct example_struct_iterator_tag;
template<typename Point, int Pos>
struct point_iterator
: fusion::iterator_base<point_iterator<Point, Pos> >
{
BOOST_STATIC_ASSERT(Pos >=0 && Pos <geometry::traits::dimension<typename remove_cv<Point>::type>::value);
typedef Point point_type;
typedef mpl::int_<Pos> index;
//typedef fusion::random_access_traversal_tag category;
typedef fusion::forward_traversal_tag category;
point_iterator(Point& p) : point_(p) {}
Point& point_;
};
}
namespace boost { namespace fusion {
// tag dispatch
namespace traits {
template <typename T, size_t dims, typename cs>
struct tag_of<geometry::model::point<T, dims, cs> > {
typedef bg_to_fusion::bg_point_tag type;
};
template <typename Point, int Pos>
struct tag_of<bg_to_fusion::point_iterator<Point, Pos> > {
typedef bg_to_fusion::example_struct_iterator_tag type;
};
}
namespace extension {
//////////////////////////////////////////////////////
// Point extension implementations
template<>
struct is_sequence_impl<bg_to_fusion::bg_point_tag>
{
template<typename T>
struct apply : mpl::true_ {};
};
template <>
struct size_impl<bg_to_fusion::bg_point_tag> {
template <typename Point>
struct apply : mpl::integral_c<size_t, geometry::traits::dimension<typename remove_cv<Point>::type>::value> { };
};
// begin
template<>
struct begin_impl<bg_to_fusion::bg_point_tag>
{
template<typename Point>
struct apply
{
typedef typename bg_to_fusion::point_iterator<Point, 0> type;
static type
call(Point& p)
{
return type(p);
}
};
};
// end
template<>
struct end_impl<bg_to_fusion::bg_point_tag>
{
template<typename Point> struct apply {
typedef typename bg_to_fusion::point_iterator<Point, geometry::traits::dimension<Point>::value> type;
static type call(Point& p) {
return type(p);
}
};
};
////////////////////////
// Iterator extension implementations
// value_of
template <>
struct value_of_impl<bg_to_fusion::example_struct_iterator_tag> {
template<typename Iterator> struct apply;
template<typename Point, int Pos>
struct apply<bg_to_fusion::point_iterator<Point, Pos> > {
typedef typename geometry::traits::coordinate_type<typename remove_cv<Point>::type>::type type;
};
};
// deref
template<>
struct deref_impl<bg_to_fusion::example_struct_iterator_tag>
{
template<typename Iterator>
struct apply;
template<typename Point, int Pos>
struct apply<bg_to_fusion::point_iterator<Point, Pos> >
{
typedef typename geometry::traits::coordinate_type<typename remove_cv<Point>::type>::type coordinate_type;
//typedef typename mpl::if_<is_const<Point>, coordinate_type const&, coordinate_type&>::type type;
typedef coordinate_type type;
static type
call(bg_to_fusion::point_iterator<Point, Pos> const& it) {
return it.point_.template get<Pos>();
}
};
};
// next
template<>
struct next_impl<bg_to_fusion::example_struct_iterator_tag> {
template<typename Iterator> struct apply
{
typedef typename Iterator::point_type point_type;
typedef typename Iterator::index index;
typedef typename bg_to_fusion::point_iterator<point_type, index::value + 1> type;
static type
call(Iterator const& i) {
return type(i.point_);
}
};
};
}
} }