R:读取带十进制逗号的 csv 数字,包 sparklyr

R :Read csv numeric with comma in decimal, package sparklyr

我需要使用库 "sparklyr" 读取“.csv”类型的文件,其中数值以逗号显示。这个想法是能够直接使用 "spark_read_csv()" 进行阅读。

我正在使用:

library(sparklyr)
library(dplyr)

f<-data.frame(DNI=c("22-e","EE-4","55-W"), 
DD=c("33,2","33.2","14,55"),CC=c("2","44,4","44,9")) 

write.csv(f,"aff.csv")

sc <- spark_connect(master = "local", spark_home = "/home/tomas/spark-2.1.0-bin-hadoop2.7/", version = "2.1.0")

df <- spark_read_csv(sc, name = "data", path = "/home/tomas/Documentos/Clusterapp/aff.csv", header = TRUE, delimiter = ",")

tbl <- sdf_copy_to(sc = sc, x =df , overwrite = T)

问题,将数字读作因子

您可以将数字中的“,”替换为“.”。并将它们转换为数字。例如

df$DD<-as.numeric(gsub(pattern = ",",replacement = ".",x = df$DD))

有帮助吗?

要在 spark df 中操作字符串,您可以使用此处提到的 regexp_replace 函数:

https://spark.rstudio.com/guides/textmining/

对于你的问题,它会这样解决:

tbl <- sdf_copy_to(sc = sc, x =df, overwrite = T)

tbl0<-tbl%>%
    mutate(DD=regexp_replace(DD,",","."),CC=regexp_replace(CC,",","."))%>%
    mutate_at(vars(c("DD","CC")),as.numeric)

检查结果:

> glimpse(tbl0)
Observations: ??
Variables: 3
$ DNI <chr> "22-e", "EE-4", "55-W"
$ DD  <dbl> 33.20, 33.20, 14.55
$ CC  <dbl> 2.0, 44.4, 44.9

如果您不想将其替换为“.”也许你可以试试这个。

spark_read_csv

检查文档。使用 escape 参数指定您要忽略的字符。

在这种情况下尝试使用:

df <- spark_read_csv(sc, name = "data", path = "/home/tomas/Documentos/Clusterapp/aff.csv", header = TRUE, delimiter = ",", escape = "\,").