在 Tensorflow 数据集中拆分数据集问题 API

Split a dataset issue in Tensorflow dataset API

我正在使用 tf.contrib.data.make_csv_dataset 读取一个 csv 文件来形成一个数据集,然后我使用命令 take() 来形成另一个只有一个元素的数据集,但仍然 returns所有元素。

这里有什么问题?我带来了下面的代码:

import tensorflow as tf
import os
tf.enable_eager_execution()

# Constants

column_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']
class_names = ['Iris setosa', 'Iris versicolor', 'Iris virginica']
batch_size   = 1
feature_names = column_names[:-1]
label_name = column_names[-1]

# to reorient data strucute
def pack_features_vector(features, labels):
  """Pack the features into a single array."""
  features = tf.stack(list(features.values()), axis=1)
  return features, labels

# Download the file
train_dataset_url = "http://download.tensorflow.org/data/iris_training.csv"
train_dataset_fp = tf.keras.utils.get_file(fname=os.path.basename(train_dataset_url),
                                       origin=train_dataset_url)

# form the dataset
train_dataset = tf.contrib.data.make_csv_dataset(
train_dataset_fp,
batch_size, 
column_names=column_names,
label_name=label_name,
num_epochs=1)

# perform the mapping
train_dataset = train_dataset.map(pack_features_vector)

# construct a databse with one element 
train_dataset= train_dataset.take(1)

# inspect elements
for step in range(10):
    features, labels = next(iter(train_dataset))
    print(list(features))

基于 的答案,我们可以将数据集拆分为 Dataset.take()Dataset.skip():

train_size = int(0.7 * DATASET_SIZE)

train_dataset = full_dataset.take(train_size)
test_dataset = full_dataset.skip(train_size)

如何修复您的代码?

不要在循环中多次创建迭代器,而是使用一个迭代器:

# inspect elements
for feature, label in train_dataset:
    print(feature)

您的代码中发生了什么导致这种行为?

1) 内置 python iter function gets an iterator from an object or the object itself must supply its own iterator. So when you call iter(train_dataset), it is equavalent to call Dataset.make_one_shot_iterator().

2) 默认情况下,在 tf.contrib.data.make_csv_dataset() 中,shuffle 参数为 True (shuffle=True)。因此,每次调用 iter(train_dataset) 时,它都会创建包含不同数据的新迭代器。

3) 最后,当通过 for step in range(10) 循环时,您创建了 10 个大小为 1 的不同迭代器,每个迭代器都有自己的数据,因为它们被打乱了。

建议:如果你想避免这样的事情在循环外初始化(创建)迭代器:

train_dataset = train_dataset.take(1)
iterator = train_dataset.make_one_shot_iterator()
# inspect elements
for step in range(10):
    features, labels = next(iterator)
    print(list(features))
    # throws exception because size of iterator is 1