通过 Nat-kind 重叠实例
Overlapping instances via Nat-kind
这个问题实际上是由于尝试将少数数学组实现为类型而出现的。
循环组没问题(别处定义的Data.Group
实例):
newtype Cyclic (n :: Nat) = Cyclic {cIndex :: Integer} deriving (Eq, Ord)
cyclic :: forall n. KnownNat n => Integer -> Cyclic n
cyclic x = Cyclic $ x `mod` toInteger (natVal (Proxy :: Proxy n))
但是对称群在定义某些实例时存在一些问题(通过阶乘数系统实现):
infixr 6 :.
data Symmetric (n :: Nat) where
S1 :: Symmetric 1
(:.) :: (KnownNat n, 2 <= n) => Cyclic n -> Symmetric (n-1) -> Symmetric n
instance {-# OVERLAPPING #-} Enum (Symmetric 1) where
toEnum _ = S1
fromEnum S1 = 0
instance (KnownNat n, 2 <= n) => Enum (Symmetric n) where
toEnum n = let
(q,r) = divMod n (1 + fromEnum (maxBound :: Symmetric (n-1)))
in toEnum q :. toEnum r
fromEnum (x :. y) = fromInteger (cIndex x) * (1 + fromEnum (maxBound `asTypeOf` y)) + fromEnum y
instance {-# OVERLAPPING #-} Bounded (Symmetric 1) where
minBound = S1
maxBound = S1
instance (KnownNat n, 2 <= n) => Bounded (Symmetric n) where
minBound = minBound :. minBound
maxBound = maxBound :. maxBound
来自 ghci 的错误消息(仅简要介绍):
Overlapping instances for Enum (Symmetric (n - 1))
Overlapping instances for Bounded (Symmetric (n - 1))
那么 GHC 怎么知道 n-1
是否等于 1 呢?我也想知道解决方案是否可以在没有 FlexibleInstances
.
的情况下编写
添加 Bounded (Symmetric (n-1))
和 Enum (Symmetric (n-1))
作为约束,因为完全解决这些约束需要知道 n 的确切值。
instance (KnownNat n, 2 <= n, Bounded (Symmetric (n-1)), Enum (Symmetric (n-1))) =>
Enum (Symmetric n) where
...
instance (KnownNat n, 2 <= n, Bounded (Symmetric (n-1))) =>
Bounded (Symmetric n) where
...
为了避免 FlexibleInstances
(IMO 不值得,FlexibleInstances
是一个良性扩展),使用 Peano 数 data Nat = Z | S Nat
而不是 GHC 的原始表示。先把实例头Bounded (Symmetric n)
替换成Bounded (Symmetric (S (S n')))
(这个起到约束2 <= n
的作用),然后用辅助class(可能更多)打散实例到满足实例头的标准要求。它可能看起来像这样:
instance Bounded_Symmetric n => Bounded (Symmetric n) where ...
instance Bounded_Symmetric O where ...
instance Bounded_Symmetric n => Bounded_Symmetric (S n) where ...
这个问题实际上是由于尝试将少数数学组实现为类型而出现的。
循环组没问题(别处定义的Data.Group
实例):
newtype Cyclic (n :: Nat) = Cyclic {cIndex :: Integer} deriving (Eq, Ord)
cyclic :: forall n. KnownNat n => Integer -> Cyclic n
cyclic x = Cyclic $ x `mod` toInteger (natVal (Proxy :: Proxy n))
但是对称群在定义某些实例时存在一些问题(通过阶乘数系统实现):
infixr 6 :.
data Symmetric (n :: Nat) where
S1 :: Symmetric 1
(:.) :: (KnownNat n, 2 <= n) => Cyclic n -> Symmetric (n-1) -> Symmetric n
instance {-# OVERLAPPING #-} Enum (Symmetric 1) where
toEnum _ = S1
fromEnum S1 = 0
instance (KnownNat n, 2 <= n) => Enum (Symmetric n) where
toEnum n = let
(q,r) = divMod n (1 + fromEnum (maxBound :: Symmetric (n-1)))
in toEnum q :. toEnum r
fromEnum (x :. y) = fromInteger (cIndex x) * (1 + fromEnum (maxBound `asTypeOf` y)) + fromEnum y
instance {-# OVERLAPPING #-} Bounded (Symmetric 1) where
minBound = S1
maxBound = S1
instance (KnownNat n, 2 <= n) => Bounded (Symmetric n) where
minBound = minBound :. minBound
maxBound = maxBound :. maxBound
来自 ghci 的错误消息(仅简要介绍):
Overlapping instances for Enum (Symmetric (n - 1))
Overlapping instances for Bounded (Symmetric (n - 1))
那么 GHC 怎么知道 n-1
是否等于 1 呢?我也想知道解决方案是否可以在没有 FlexibleInstances
.
添加 Bounded (Symmetric (n-1))
和 Enum (Symmetric (n-1))
作为约束,因为完全解决这些约束需要知道 n 的确切值。
instance (KnownNat n, 2 <= n, Bounded (Symmetric (n-1)), Enum (Symmetric (n-1))) =>
Enum (Symmetric n) where
...
instance (KnownNat n, 2 <= n, Bounded (Symmetric (n-1))) =>
Bounded (Symmetric n) where
...
为了避免 FlexibleInstances
(IMO 不值得,FlexibleInstances
是一个良性扩展),使用 Peano 数 data Nat = Z | S Nat
而不是 GHC 的原始表示。先把实例头Bounded (Symmetric n)
替换成Bounded (Symmetric (S (S n')))
(这个起到约束2 <= n
的作用),然后用辅助class(可能更多)打散实例到满足实例头的标准要求。它可能看起来像这样:
instance Bounded_Symmetric n => Bounded (Symmetric n) where ...
instance Bounded_Symmetric O where ...
instance Bounded_Symmetric n => Bounded_Symmetric (S n) where ...