使用热图调整子图

Adjust subplot with heatmaps

我有一个带有混淆矩阵的 Subplots,它显示为 HeatMap

我想调整图表以使其更易读并执行以下操作:

1) 在列上方加一个大标题'Targets'

2) 加一个大Ylabel 'Predictions'

3) 每一列只有一个大图例,因为它们显示的是相同的东西

4 ) 为每列添加列名 ['Train CM', 'Train Norm CM', 'Validation CM', 'Validation Norm CM'] 和行名称 [f'Epoch {i}' for i in range(n_epoch)]。我喜欢 here 但只适用于列而不适用于行,我不知道为什么。

我的代码:

cols = ['Train CM', 'Train Norm CM', 'Validation CM', 'Validation Norm CM']
rows = [f'Epoch {i}' for i in range(n_epoch)]

f, axes  = plt.subplots(nrows = n_epoch, ncols = 4, figsize=(40, 30))
for ax, col in zip(axes [0], cols):
    ax.set_title(col, size='large')

for ax, row in zip(axes[:,0], rows):
    ax.set_ylabel(row, rotation=0, size='large')

f.tight_layout()

for e in range(n_epoch):
    for c in range(4):
        # take conf matrix from lists cm_Train or cm_Validation of ConfusionMatrix() objects
        if c == 0:
            cm = np.transpose(np.array([list(item.values()) for item in cm_Train[e].matrix.values()]))
        elif c == 1:
            cm = np.transpose(np.array([list(item.values()) for item in cm_Train[e].normalized_matrix.values()]))
        elif c == 2:
        cm = np.transpose(np.array([list(item.values()) for item in cm_Validation[e].matrix.values()]))
    else:
        cm = np.transpose(np.array([list(item.values()) for item in cm_Validation[e].normalized_matrix.values()]))
    sns.heatmap(cm, annot=True, fmt='g', ax = axes[e, c], linewidths=.3)

我正在展示一个空图的解决方案,因为我没有你的数据。这是你想要的吗:

n_epoch = 4
cols = ['Train CM', 'Train Norm CM', 'Validation CM', 'Validation Norm CM']
rows = [f'Epoch {i}' for i in range(n_epoch)]

f, axes  = plt.subplots(nrows = n_epoch, ncols = 4, figsize=(12, 8))

f.text(0, 0.5, 'Predictions', ha='center', va='center', fontsize=20, rotation='vertical')
plt.suptitle("One big title", fontsize=18, y=1.05)

for ax, col in zip(axes [0], cols):
    ax.set_title(col, size='large')

for ax, row in zip(axes[:, 0], rows):
    ax.set_ylabel(row, size='large')

plt.tight_layout()    

放置颜色条:在这里,您放置跨越每列所有行的颜色条。但是,这里 tight_layout() 不兼容,因此您必须将其关闭。

f, axes  = plt.subplots(nrows = n_epoch, ncols = 4, figsize=(12, 8))

for i, ax in enumerate(axes.flat):
    im = ax.imshow(np.random.random((20,20)), vmin=0, vmax=1)
    if i%4 == 0:
        f.colorbar(im, ax=axes[:,int(i/4)].ravel().tolist(), aspect=30, pad=0.05)    

f.text(0.08, 0.5, 'Predictions', ha='center', va='center', fontsize=20, rotation='vertical')
plt.suptitle("One big title", fontsize=18)

for ax, col in zip(axes [0], cols):
    ax.set_title(col, size='large')

for ax, row in zip(axes[:, 0], rows):
    ax.set_ylabel(row, size='large')