计算 r 中 A/B 测试数据集的贝叶斯因子
Compute the Bayes factor of an A/B test dataset in r
我正在尝试计算可以找到 here 的 A/B 测试数据集的贝叶斯因子。但是,我最终得到了 NaN,因为 beta 系数的计算结果为零。在计算可能性时,我假设它服从二项分布。因此,我遵循这个公式:
可能性=选择(n,k) * Beta(k+1,n-k+1)
代码可以在下面找到
data <- read.csv(file="ab_data.csv", header=TRUE, sep=",")
control <- data[which(data$group == "control"),]
treatment <- data[which(data$group == "treatment"),]
#compute bayes factor
n1 = nrow(control)
r1 = sum(control$converted)
n2 = nrow(treatment)
r2 = sum(treatment$converted)
likelihood_control <- choose(n1,r1) * beta(r1+1, n1-r1+1)
likelihood_treatment <- choose(n2,r2) * beta(r2+1, n2-r2+1)
bayes_factor <- likelihood_control/ likelihood_treatment
beta(r1+1, n1+r1+1)
beta(r2+1, n2-r2+1)
bayes_factor
如您所见,问题在于 beta 函数返回 0,但这并不是因为可能性实际上为 0,只是可能性太小以至于计算机将其存储为 0。第二个问题是 choose 返回 Inf。同样,这并不是因为该值实际上是无限的,只是 R 无法在内部存储那么大的值。解决方案是使用对数,它增长得更慢,然后在最后取幂。下面应该可以工作(我测试了 logchoose 函数,它似乎可以工作)
logchoose <- function(n, k){
num <- sum(log(seq(n - k + 1, n)))
denom <- sum(log(1:k))
return(num - denom)
}
likelihood_control <- logchoose(n1,r1) + lbeta(r1+1, n1-r1+1)
likelihood_treatment <- logchoose(n2,r2) + lbeta(r2+1, n2-r2+1)
bayes_factor <- exp(likelihood_control - likelihood_treatment)
bayes_factor
我正在尝试计算可以找到 here 的 A/B 测试数据集的贝叶斯因子。但是,我最终得到了 NaN,因为 beta 系数的计算结果为零。在计算可能性时,我假设它服从二项分布。因此,我遵循这个公式:
可能性=选择(n,k) * Beta(k+1,n-k+1)
代码可以在下面找到
data <- read.csv(file="ab_data.csv", header=TRUE, sep=",")
control <- data[which(data$group == "control"),]
treatment <- data[which(data$group == "treatment"),]
#compute bayes factor
n1 = nrow(control)
r1 = sum(control$converted)
n2 = nrow(treatment)
r2 = sum(treatment$converted)
likelihood_control <- choose(n1,r1) * beta(r1+1, n1-r1+1)
likelihood_treatment <- choose(n2,r2) * beta(r2+1, n2-r2+1)
bayes_factor <- likelihood_control/ likelihood_treatment
beta(r1+1, n1+r1+1)
beta(r2+1, n2-r2+1)
bayes_factor
如您所见,问题在于 beta 函数返回 0,但这并不是因为可能性实际上为 0,只是可能性太小以至于计算机将其存储为 0。第二个问题是 choose 返回 Inf。同样,这并不是因为该值实际上是无限的,只是 R 无法在内部存储那么大的值。解决方案是使用对数,它增长得更慢,然后在最后取幂。下面应该可以工作(我测试了 logchoose 函数,它似乎可以工作)
logchoose <- function(n, k){
num <- sum(log(seq(n - k + 1, n)))
denom <- sum(log(1:k))
return(num - denom)
}
likelihood_control <- logchoose(n1,r1) + lbeta(r1+1, n1-r1+1)
likelihood_treatment <- logchoose(n2,r2) + lbeta(r2+1, n2-r2+1)
bayes_factor <- exp(likelihood_control - likelihood_treatment)
bayes_factor