复杂度 类 个例子

Complexity classes examples

我想知道我对以下陈述的回答是否确实正确:

3(n^3) + 5(n^2) + 25n + 10 = BigOmega(n^3) -> T ->以等于或更慢的速度增长

3(n^3) + 5(n^2) + 25n + 10 = Theta(n^3) -> T -增长速度正好等于

3(n^3) + 5(n^2) + 25n + 10 = BigO(n^3) -> T - 增长速度等于或更快

谢谢!!!

O 符号的正式定义是:

f(n) = O(g(n)) means that there exists some constant c and n0 that f(n) <= c*g(n) for n >= n0.

f(n) = Ω(g(n)) means that there exists some constant c and n0 that f(n) >= c*g(n) for n >= n0.

f(n) = Θ(g(n)) means that there exists some constants c1 and c2 and n0 that f(n) >= c1*g(n) and f(n) <= c2*g(n) for n >= n0.

O 的证明:

3(n^3) + 5(n^2) + 25n + 10 < 3*n^3 + n^3 + n^3 = 5*n^3

您可以看到对于 n >= 10 这个公式是正确的。 所以存在c = 5n0 = 10,所以是O(n^3).

Ω 的证明:

3(n^3) + 5(n^2) + 25n + 10 > 3*n^3

所以c = 3n0 = 1,因此是Ω(n^3)

因为 OΩ 都适用,所以 Θ 的第 3 个陈述也为真。