将篮子数据框融化为没有循环的单个数据框

Melt basket dataframe to single dataframe without loops

我有一个篮子格式的数据框,如下所示:

V1 <- c('milk', 'beer', 'wrench', 'milk' )
V2 <- c('eggs', 'elbow grease', '', 'beer')
V3 <- c('water', '', '', '')

df <- data.frame(V1, V2, V3)

输出:

      V1      V2           V3
1   milk      eggs         water
2   beer      elbow grease      
3   wrench                   
4   milk      beer  

我想要生成的是像这样的单一格式的数据框:

  transaction   product
1           1   milk
2           1   eggs
3           1   water
4           2   beer
5           2   elbow grease
6           3   wrench
7           4   milk
8           4   beer

现在,我想要数据框中的数据,这样我就可以在切换到 apriori R 包使用的事务格式之前进行过滤。

将此数据框从篮子格式转换为单一格式的最快方法是什么?

现在我正在使用一个非常慢的循环。

dfSingle <- data.frame(product = character(),
                    transaction = integer())
for (row in 1:nrow(df))  {
  # Create a list of products
  productList <- unname(unlist(df[row, ]))

  # Remove blank spaces
  productList <- productList[!productList %in% ""]

  # Convert to a dataframe
  dfTemp <- as.data.frame(productList)
  colnames(dfTemp) <- "product"
  dfTemp$transaction <- row

  # Bind to larger dataframe with previous rows
  dfSingle <- rbind(dfSingle, dfTemp)

}

我考虑过使用 apply 将此函数应用于每一行,但我对如何将多个结果行绑定到前几行的结果感到困惑。

您可以使用 stack。诀窍是转置您的数据框,即

df1 <- stack(as.data.frame(t(df), stringsAsFactors = FALSE))

df1[df1$values != '',]
         values ind
#1          milk  V1
#2          eggs  V1
#3         water  V1
#4          beer  V2
#5  elbow grease  V2
#7        wrench  V3
#10         milk  V4
#11         beer  V4

注意: 一个简单的 rgex 只能从 ind 列中提取数字,即

df1$ind <- gsub('\D+', '', df1$ind)

这会给,

         values ind
1          milk   1
2          eggs   1
3         water   1
4          beer   2
5  elbow grease   2
7        wrench   3
10         milk   4
11         beer   4

使用 tidyverse 你可以:

df %>%
 mutate_all(funs(ifelse(. == "", NA_character_, paste0(.)))) %>%
 rowid_to_column(var = "transaction") %>%
 gather(var, product, -transaction, na.rm = TRUE) %>%
 select(-var) %>%
 arrange(transaction)

  transaction      product
1           1         milk
2           1         eggs
3           1        water
4           2         beer
5           2 elbow grease
6           3       wrench
7           4         milk
8           4         beer

首先,它将空行替换为 NA_character_。其次,它创建一个行 ID 为 "transaction" 的变量。第三,它将数据从宽格式转换为长格式,并删除带有 NA_character_ 的行。最后,它按照"transaction".

排列数据

或data.table方法 (单行)

首先从行名中获取交易:setDT(df)[, transaction := .I ] 然后融化,使用事务作为 id 列:melt( ... , id = "transaction" ) 最后删除空值和 return 第一列和第三列:...[!value == "", c(1,3) ]

melt( setDT(df)[, transaction := .I ], id = "transaction" )[!value == "", c(1,3) ]

#    transaction        value
# 1:           1         milk
# 2:           2         beer
# 3:           3       wrench
# 4:           4         milk
# 5:           1         eggs
# 6:           2 elbow grease
# 7:           4         beer
# 8:           1        water

将字符""替换为合适的格式NA后,就可以创建一个新的列事务,然后使用reshape2::melt:

df[df == ""]   <- NA    
df$transaction <- 1:nrow(df)

然后:

melted_df <- na.omit(reshape2::melt(data=df, id.vars="transaction"))

产生:

> melted_df
  transaction variable        value
1           1       V1         milk
2           2       V1         beer
3           3       V1       wrench
4           4       V1         milk
5           1       V2         eggs
6           2       V2 elbow grease
8           4       V2         beer
9           1       V3        water

这个函数的好处是它会给你一个列variable,它给你前面dfdata.frame的列的名称。如果它与您无关,请使用 df$variable <- NULL 删除此列。如果您还想通过增加交易顺序对结果进行排序:

out <- melted_df[order(melted_df$transaction), ]

最终产生:

> out
  transaction        value
1           1         milk
5           1         eggs
9           1        water
2           2         beer
6           2 elbow grease
3           3       wrench
4           4         milk
8           4         beer

另一个基地R替代:

do.call(
  rbind, 
  sapply(seq_along(df), function(i) cbind(transaction = i, product = df[[i]][nzchar(df[[i]])])) 
)

     transaction product       
[1,] "1"         "milk"        
[2,] "1"         "beer"        
[3,] "1"         "wrench"      
[4,] "1"         "milk"        
[5,] "2"         "eggs"        
[6,] "2"         "elbow grease"
[7,] "2"         "beer"        
[8,] "3"         "water"