使用 RSTAN 拟合泊松 HMM JAGS 模型
Fitting a poisson HMM JAGS model with RSTAN
Walter Zucchini 在他的书 Hidden Markov Models for Time Series An Introduction Using R 的第 8 章第 129 页中使用 R2OpenBUGS 调整泊松 HMM,然后我展示了代码。我有兴趣使用 rstan 调整同一个模型,但是由于我是这个包的新手,所以我不清楚任何建议的语法。
数据
dat <- read.table("http://www.hmms-for-time-series.de/second/data/earthquakes.txt")
RJAGS
library(R2jags)
library(rjags)
HMM <- function(){
for(i in 1:m){
delta[i] <- 1/m
v[i] <- 1}
s[1] ~ dcat(delta[])
for(i in 2:100){
s[i] ~ dcat(Gamma[s[i-1],])}
states[1] ~ dcat(Gamma[s[100],])
x[1]~dpois(lambda[states[1]])
for(i in 2:n){
states[i]~dcat(Gamma[states[i-1],])
x[i]~dpois(lambda[states[i]])}
for(i in 1:m){
tau[i]~dgamma(1,0.08)
Gamma[i,1:m]~ddirch(v[])}
lambda[1]<-tau[1]
for(i in 2:m){
lambda[i]<-lambda[i-1]+tau[i]}}
x = dat[,2]
n = dim(dat)[1]
m = 2
mod = jags(data = list("x", "n", "m" ), inits = NULL, parameters.to.save = c("lambda","Gamma"),
model.file = HMM, n.iter = 10000, n.chains = 1)
产出
mod
Inference for Bugs model at "C:/Users/USER/AppData/Local/Temp/RtmpOkrM6m/model36c8429c5442.txt", fit using jags,
1 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
n.sims = 1000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5%
Gamma[1,1] 0.908 0.044 0.805 0.884 0.915 0.940 0.971
Gamma[2,1] 0.155 0.071 0.045 0.105 0.144 0.195 0.325
Gamma[1,2] 0.092 0.044 0.029 0.060 0.085 0.116 0.195
Gamma[2,2] 0.845 0.071 0.675 0.805 0.856 0.895 0.955
lambda[1] 15.367 0.763 13.766 14.877 15.400 15.894 16.752
lambda[2] 26.001 1.321 23.418 25.171 25.956 26.843 28.717
deviance 645.351 8.697 630.338 639.359 644.512 650.598 665.405
DIC info (using the rule, pD = var(deviance)/2)
pD = 37.8 and DIC = 683.2
DIC is an estimate of expected predictive error (lower deviance is better).
RSTAN
library("rstan")
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
HMM <- '
data{
int<lower=0> n; // number of observations (length)
int<lower=0> x[n]; // observations
int<lower=1> m; // number of hidden states
}
parameters{
simplex[m] Gamma[n]; // t.p.m
vector[m] lambda; // mean of poisson ordered
}
model{
vector[m] delta[m];
vector[m] v[m];
vector[100] s[100];
vector[n] states[n];
vector[m] tau;
for(i in 1:m){
delta[i] = 1/m;
v[i] = 1;}
s[1] ~ categorical(delta[]);
for(i in 2:100){
s[i] ~ categorical(Gamma[s[i-1],]);}
states[1] ~ categorical(Gamma[s[100],]);
x[1] ~ poisson(lambda[states[1]]);
for(i in 2:n){
states[i] ~ categorical(Gamma[states[i-1],]);
x[i] ~ poisson(lambda[states[i]])};
for(i in 1:m){
tau[i] ~ gamma(1,0.08);
Gamma[i,1:m] ~ dirichlet(v[]);}
lambda[1] = tau[1];
for(i in 2:m){
lambda[i] = lambda[i-1] + tau[i]};}'
data <- list(n = dim(dat)[1], x = dat[,2], m = 2)
system.time(mod2 <- stan(model_code = HMM, data = data, chains = 1, iter = 1000, thin = 4))
mod2
然而,运行 stan 模型时出现错误。
使用前向算法,作为先验伽马分布,对于依赖状态的均值向量,并对simplex[m]
对象施加限制,对于概率转移矩阵,其中总和为rows 等于 1 得到以下估计值。
dat <- read.table("http://www.hmms-for-time-series.de/second/data/earthquakes.txt")
stan.data <- list(n=dim(dat)[1], m=2, x=dat$V2)
PHMM <- '
data {
int<lower=0> n; // length of the time series
int<lower=0> x[n]; // data
int<lower=1> m; // number of states
}
parameters{
simplex[m] Gamma[m]; // tpm
positive_ordered[m] lambda; // mean of poisson - ordered
}
model{
vector[m] log_Gamma_tr[m]; // log, transposed tpm
vector[m] lp; // for forward variables
vector[m] lp_p1; // for forward variables
lambda ~ gamma(0.1, 0.01); // assigning exchangeable priors
//(lambdas´s are ordered for sampling purposes)
// transposing tpm and taking the log of each entry
for(i in 1:m)
for(j in 1:m)
log_Gamma_tr[j, i] = log(Gamma[i, j]);
lp = rep_vector(-log(m), m); //
for(i in 1:n) {
for(j in 1:m)
lp_p1[j] = log_sum_exp(log_Gamma_tr[j] + lp) + poisson_lpmf(x[i] | lambda[j]);
lp = lp_p1;
}
target += log_sum_exp(lp);
}'
model <- stan(model_code = PHMM, data = stan.data, iter = 1000, chains = 1)
print(model,digits_summary = 3)
输出
Inference for Stan model: 11fa5b74e5bea2ca840fe5068cb01b7b.
1 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=500.
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
Gamma[1,1] 0.907 0.002 0.047 0.797 0.882 0.913 0.941 0.972 387 0.998
Gamma[1,2] 0.093 0.002 0.047 0.028 0.059 0.087 0.118 0.203 387 0.998
Gamma[2,1] 0.147 0.004 0.077 0.041 0.090 0.128 0.190 0.338 447 0.999
Gamma[2,2] 0.853 0.004 0.077 0.662 0.810 0.872 0.910 0.959 447 0.999
lambda[1] 15.159 0.044 0.894 13.208 14.570 15.248 15.791 16.768 407 1.005
lambda[2] 25.770 0.083 1.604 22.900 24.581 25.768 26.838 28.940 371 0.998
lp__ -350.267 0.097 1.463 -353.856 -351.091 -349.948 -349.155 -348.235 230 1.001
Samples were drawn using NUTS(diag_e) at Wed Jan 16 00:35:06 2019.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
Walter Zucchini 在他的书 Hidden Markov Models for Time Series An Introduction Using R 的第 8 章第 129 页中使用 R2OpenBUGS 调整泊松 HMM,然后我展示了代码。我有兴趣使用 rstan 调整同一个模型,但是由于我是这个包的新手,所以我不清楚任何建议的语法。
数据
dat <- read.table("http://www.hmms-for-time-series.de/second/data/earthquakes.txt")
RJAGS
library(R2jags)
library(rjags)
HMM <- function(){
for(i in 1:m){
delta[i] <- 1/m
v[i] <- 1}
s[1] ~ dcat(delta[])
for(i in 2:100){
s[i] ~ dcat(Gamma[s[i-1],])}
states[1] ~ dcat(Gamma[s[100],])
x[1]~dpois(lambda[states[1]])
for(i in 2:n){
states[i]~dcat(Gamma[states[i-1],])
x[i]~dpois(lambda[states[i]])}
for(i in 1:m){
tau[i]~dgamma(1,0.08)
Gamma[i,1:m]~ddirch(v[])}
lambda[1]<-tau[1]
for(i in 2:m){
lambda[i]<-lambda[i-1]+tau[i]}}
x = dat[,2]
n = dim(dat)[1]
m = 2
mod = jags(data = list("x", "n", "m" ), inits = NULL, parameters.to.save = c("lambda","Gamma"),
model.file = HMM, n.iter = 10000, n.chains = 1)
产出
mod
Inference for Bugs model at "C:/Users/USER/AppData/Local/Temp/RtmpOkrM6m/model36c8429c5442.txt", fit using jags,
1 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
n.sims = 1000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5%
Gamma[1,1] 0.908 0.044 0.805 0.884 0.915 0.940 0.971
Gamma[2,1] 0.155 0.071 0.045 0.105 0.144 0.195 0.325
Gamma[1,2] 0.092 0.044 0.029 0.060 0.085 0.116 0.195
Gamma[2,2] 0.845 0.071 0.675 0.805 0.856 0.895 0.955
lambda[1] 15.367 0.763 13.766 14.877 15.400 15.894 16.752
lambda[2] 26.001 1.321 23.418 25.171 25.956 26.843 28.717
deviance 645.351 8.697 630.338 639.359 644.512 650.598 665.405
DIC info (using the rule, pD = var(deviance)/2)
pD = 37.8 and DIC = 683.2
DIC is an estimate of expected predictive error (lower deviance is better).
RSTAN
library("rstan")
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
HMM <- '
data{
int<lower=0> n; // number of observations (length)
int<lower=0> x[n]; // observations
int<lower=1> m; // number of hidden states
}
parameters{
simplex[m] Gamma[n]; // t.p.m
vector[m] lambda; // mean of poisson ordered
}
model{
vector[m] delta[m];
vector[m] v[m];
vector[100] s[100];
vector[n] states[n];
vector[m] tau;
for(i in 1:m){
delta[i] = 1/m;
v[i] = 1;}
s[1] ~ categorical(delta[]);
for(i in 2:100){
s[i] ~ categorical(Gamma[s[i-1],]);}
states[1] ~ categorical(Gamma[s[100],]);
x[1] ~ poisson(lambda[states[1]]);
for(i in 2:n){
states[i] ~ categorical(Gamma[states[i-1],]);
x[i] ~ poisson(lambda[states[i]])};
for(i in 1:m){
tau[i] ~ gamma(1,0.08);
Gamma[i,1:m] ~ dirichlet(v[]);}
lambda[1] = tau[1];
for(i in 2:m){
lambda[i] = lambda[i-1] + tau[i]};}'
data <- list(n = dim(dat)[1], x = dat[,2], m = 2)
system.time(mod2 <- stan(model_code = HMM, data = data, chains = 1, iter = 1000, thin = 4))
mod2
然而,运行 stan 模型时出现错误。
使用前向算法,作为先验伽马分布,对于依赖状态的均值向量,并对simplex[m]
对象施加限制,对于概率转移矩阵,其中总和为rows 等于 1 得到以下估计值。
dat <- read.table("http://www.hmms-for-time-series.de/second/data/earthquakes.txt")
stan.data <- list(n=dim(dat)[1], m=2, x=dat$V2)
PHMM <- '
data {
int<lower=0> n; // length of the time series
int<lower=0> x[n]; // data
int<lower=1> m; // number of states
}
parameters{
simplex[m] Gamma[m]; // tpm
positive_ordered[m] lambda; // mean of poisson - ordered
}
model{
vector[m] log_Gamma_tr[m]; // log, transposed tpm
vector[m] lp; // for forward variables
vector[m] lp_p1; // for forward variables
lambda ~ gamma(0.1, 0.01); // assigning exchangeable priors
//(lambdas´s are ordered for sampling purposes)
// transposing tpm and taking the log of each entry
for(i in 1:m)
for(j in 1:m)
log_Gamma_tr[j, i] = log(Gamma[i, j]);
lp = rep_vector(-log(m), m); //
for(i in 1:n) {
for(j in 1:m)
lp_p1[j] = log_sum_exp(log_Gamma_tr[j] + lp) + poisson_lpmf(x[i] | lambda[j]);
lp = lp_p1;
}
target += log_sum_exp(lp);
}'
model <- stan(model_code = PHMM, data = stan.data, iter = 1000, chains = 1)
print(model,digits_summary = 3)
输出
Inference for Stan model: 11fa5b74e5bea2ca840fe5068cb01b7b.
1 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=500.
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
Gamma[1,1] 0.907 0.002 0.047 0.797 0.882 0.913 0.941 0.972 387 0.998
Gamma[1,2] 0.093 0.002 0.047 0.028 0.059 0.087 0.118 0.203 387 0.998
Gamma[2,1] 0.147 0.004 0.077 0.041 0.090 0.128 0.190 0.338 447 0.999
Gamma[2,2] 0.853 0.004 0.077 0.662 0.810 0.872 0.910 0.959 447 0.999
lambda[1] 15.159 0.044 0.894 13.208 14.570 15.248 15.791 16.768 407 1.005
lambda[2] 25.770 0.083 1.604 22.900 24.581 25.768 26.838 28.940 371 0.998
lp__ -350.267 0.097 1.463 -353.856 -351.091 -349.948 -349.155 -348.235 230 1.001
Samples were drawn using NUTS(diag_e) at Wed Jan 16 00:35:06 2019.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).