InvalidArgumentError: cannot compute MatMul as input #0(zero-based) was expected to be a float tensor but is a double tensor [Op:MatMul]
InvalidArgumentError: cannot compute MatMul as input #0(zero-based) was expected to be a float tensor but is a double tensor [Op:MatMul]
有人可以解释一下,TensorFlow 的 eager 模式是如何工作的吗?我正在尝试构建一个简单的回归,如下所示:
import tensorflow as tf
tfe = tf.contrib.eager
tf.enable_eager_execution()
import numpy as np
def make_model():
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(4, activation='relu'))
net.add(tf.keras.layers.Dense(1))
return net
def compute_loss(pred, actual):
return tf.reduce_mean(tf.square(tf.subtract(pred, actual)))
def compute_gradient(model, pred, actual):
"""compute gradients with given noise and input"""
with tf.GradientTape() as tape:
loss = compute_loss(pred, actual)
grads = tape.gradient(loss, model.variables)
return grads, loss
def apply_gradients(optimizer, grads, model_vars):
optimizer.apply_gradients(zip(grads, model_vars))
model = make_model()
optimizer = tf.train.AdamOptimizer(1e-4)
x = np.linspace(0,1,1000)
y = x+np.random.normal(0,0.3,1000)
y = y.astype('float32')
train_dataset = tf.data.Dataset.from_tensor_slices((y.reshape(-1,1)))
epochs = 2# 10
batch_size = 25
itr = y.shape[0] // batch_size
for epoch in range(epochs):
for data in tf.contrib.eager.Iterator(train_dataset.batch(25)):
preds = model(data)
grads, loss = compute_gradient(model, preds, data)
print(grads)
apply_gradients(optimizer, grads, model.variables)
# with tf.GradientTape() as tape:
# loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(preds, data))))
# grads = tape.gradient(loss, model.variables)
# print(grads)
# optimizer.apply_gradients(zip(grads, model.variables),global_step=None)
Gradient output: [None, None, None, None, None, None]
错误如下:
----------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-a589b9123c80> in <module>
35 grads, loss = compute_gradient(model, preds, data)
36 print(grads)
---> 37 apply_gradients(optimizer, grads, model.variables)
38 # with tf.GradientTape() as tape:
39 # loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(preds, data))))
<ipython-input-3-a589b9123c80> in apply_gradients(optimizer, grads, model_vars)
17
18 def apply_gradients(optimizer, grads, model_vars):
---> 19 optimizer.apply_gradients(zip(grads, model_vars))
20
21 model = make_model()
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/training/optimizer.py in apply_gradients(self, grads_and_vars, global_step, name)
589 if not var_list:
590 raise ValueError("No gradients provided for any variable: %s." %
--> 591 ([str(v) for _, v, _ in converted_grads_and_vars],))
592 with ops.init_scope():
593 self._create_slots(var_list)
ValueError: No gradients provided for any variable:
编辑
我更新了我的代码。现在,问题出现在梯度计算中,它返回零。我已经检查了非零的损失值。
第 1 部分:问题确实是您输入的数据类型。默认情况下,您的 keras 模型需要 float32,但您传递的是 float64。您可以更改模型的 dtype 或将输入更改为 float32。
要更改模型:
def make_model():
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(4, activation='relu', dtype='float32'))
net.add(tf.keras.layers.Dense(4, activation='relu'))
net.add(tf.keras.layers.Dense(1))
return net
要更改您的输入:
y = y.astype('float32')
第 2 部分: 您需要在 tf.GradientTape() 下调用计算模型的函数(即 model(data)
)。例如,您可以将 compute_loss
方法替换为以下内容:
def compute_loss(model, x, y):
pred = model(x)
return tf.reduce_mean(tf.square(tf.subtract(pred, y)))
有人可以解释一下,TensorFlow 的 eager 模式是如何工作的吗?我正在尝试构建一个简单的回归,如下所示:
import tensorflow as tf
tfe = tf.contrib.eager
tf.enable_eager_execution()
import numpy as np
def make_model():
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(4, activation='relu'))
net.add(tf.keras.layers.Dense(1))
return net
def compute_loss(pred, actual):
return tf.reduce_mean(tf.square(tf.subtract(pred, actual)))
def compute_gradient(model, pred, actual):
"""compute gradients with given noise and input"""
with tf.GradientTape() as tape:
loss = compute_loss(pred, actual)
grads = tape.gradient(loss, model.variables)
return grads, loss
def apply_gradients(optimizer, grads, model_vars):
optimizer.apply_gradients(zip(grads, model_vars))
model = make_model()
optimizer = tf.train.AdamOptimizer(1e-4)
x = np.linspace(0,1,1000)
y = x+np.random.normal(0,0.3,1000)
y = y.astype('float32')
train_dataset = tf.data.Dataset.from_tensor_slices((y.reshape(-1,1)))
epochs = 2# 10
batch_size = 25
itr = y.shape[0] // batch_size
for epoch in range(epochs):
for data in tf.contrib.eager.Iterator(train_dataset.batch(25)):
preds = model(data)
grads, loss = compute_gradient(model, preds, data)
print(grads)
apply_gradients(optimizer, grads, model.variables)
# with tf.GradientTape() as tape:
# loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(preds, data))))
# grads = tape.gradient(loss, model.variables)
# print(grads)
# optimizer.apply_gradients(zip(grads, model.variables),global_step=None)
Gradient output: [None, None, None, None, None, None]
错误如下:
----------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-a589b9123c80> in <module>
35 grads, loss = compute_gradient(model, preds, data)
36 print(grads)
---> 37 apply_gradients(optimizer, grads, model.variables)
38 # with tf.GradientTape() as tape:
39 # loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(preds, data))))
<ipython-input-3-a589b9123c80> in apply_gradients(optimizer, grads, model_vars)
17
18 def apply_gradients(optimizer, grads, model_vars):
---> 19 optimizer.apply_gradients(zip(grads, model_vars))
20
21 model = make_model()
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/training/optimizer.py in apply_gradients(self, grads_and_vars, global_step, name)
589 if not var_list:
590 raise ValueError("No gradients provided for any variable: %s." %
--> 591 ([str(v) for _, v, _ in converted_grads_and_vars],))
592 with ops.init_scope():
593 self._create_slots(var_list)
ValueError: No gradients provided for any variable:
编辑
我更新了我的代码。现在,问题出现在梯度计算中,它返回零。我已经检查了非零的损失值。
第 1 部分:问题确实是您输入的数据类型。默认情况下,您的 keras 模型需要 float32,但您传递的是 float64。您可以更改模型的 dtype 或将输入更改为 float32。
要更改模型:
def make_model():
net = tf.keras.Sequential()
net.add(tf.keras.layers.Dense(4, activation='relu', dtype='float32'))
net.add(tf.keras.layers.Dense(4, activation='relu'))
net.add(tf.keras.layers.Dense(1))
return net
要更改您的输入:
y = y.astype('float32')
第 2 部分: 您需要在 tf.GradientTape() 下调用计算模型的函数(即 model(data)
)。例如,您可以将 compute_loss
方法替换为以下内容:
def compute_loss(model, x, y):
pred = model(x)
return tf.reduce_mean(tf.square(tf.subtract(pred, y)))