OpenCV 4 TypeError: Expected cv::UMat for argument 'labels'
OpenCV 4 TypeError: Expected cv::UMat for argument 'labels'
我正在编写一个面部识别程序,当我尝试训练我的识别器时,我总是收到这个错误
TypeError: Expected cv::UMat for argument 'labels'
我的密码是
def detect_face(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5);
if (len(faces)==0):
return None, None
(x, y, w, h) = faces[0]
return gray[y:y+w, x:x+h], faces[0]
def prepare_training_data():
faces = []
labels = []
for img in photo_name_list: #a collection of file locations as strings
image = cv2.imread(img)
face, rect = detect_face(image)
if face is not None:
faces.append(face)
labels.append("me")
return faces, labels
def test_photos():
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
faces, labels = prepare_training_data()
face_recognizer.train(faces, np.ndarray(labels))
labels 是从 prepare_training_data 返回的图像列表中每张照片的标签列表,我将其转换为 numpy 数组,因为我读到这就是 train() 需要的。
解决方案-标签应该是整数列表,你应该使用numpy.array(labels)
(或np.array(labels)
)。
检查错误缺失的虚拟示例:
labels=[0]*len(faces)
face_recognizer.train(faces, np.array(labels))
我没有在 python 上找到任何关于 openCV 人脸识别器的文档,所以我开始查看 c++ 文档和示例。并且由于 documentation this library uses labels
input for train
as a std::vector<int>
. A cpp example, provided by openCV docs, also uses vector<int> labels
. And so on, library even have an error for not an integer input.
我正在编写一个面部识别程序,当我尝试训练我的识别器时,我总是收到这个错误
TypeError: Expected cv::UMat for argument 'labels'
我的密码是
def detect_face(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=5);
if (len(faces)==0):
return None, None
(x, y, w, h) = faces[0]
return gray[y:y+w, x:x+h], faces[0]
def prepare_training_data():
faces = []
labels = []
for img in photo_name_list: #a collection of file locations as strings
image = cv2.imread(img)
face, rect = detect_face(image)
if face is not None:
faces.append(face)
labels.append("me")
return faces, labels
def test_photos():
face_recognizer = cv2.face.LBPHFaceRecognizer_create()
faces, labels = prepare_training_data()
face_recognizer.train(faces, np.ndarray(labels))
labels 是从 prepare_training_data 返回的图像列表中每张照片的标签列表,我将其转换为 numpy 数组,因为我读到这就是 train() 需要的。
解决方案-标签应该是整数列表,你应该使用numpy.array(labels)
(或np.array(labels)
)。
检查错误缺失的虚拟示例:
labels=[0]*len(faces)
face_recognizer.train(faces, np.array(labels))
我没有在 python 上找到任何关于 openCV 人脸识别器的文档,所以我开始查看 c++ 文档和示例。并且由于 documentation this library uses labels
input for train
as a std::vector<int>
. A cpp example, provided by openCV docs, also uses vector<int> labels
. And so on, library even have an error for not an integer input.