为什么搜索查询 table 显示 table Headers,而不是 BeautifulSoup (Python) 中的数据?

Why is search query table displaying table Headers, and not data in BeautifulSoup (Python)?

我正在尝试解析此 Link 以搜索结果

请select:

此搜索结果包含 226 个条目,我想解析所有 226 个条目并将其转换为 pandas 数据帧,这样数据帧包含 "School"、"Conference"、"GSR"、'FGR' 和 'State'。所以,到目前为止,我能够解析 Table headers,但我无法解析来自 table 的数据。请告知代码和解释。

注意:我是Python和Beautifulsoup的新手。

到目前为止我尝试过的代码:

   url='https://web3.ncaa.org/aprsearch/gsrsearch'

    #Create a handle, page, to handle the contents of the website
    page = requests.get(url)

    #Store the contents of the website under doc
    doc = lh.fromstring(page.content)

    #Parse data that are stored between <tr>..</tr> of HTML
    tr_elements = doc.xpath('//tr')

#Create empty list
col=[]
i=0

#For each row, store each first element (header) and an empty list
for t in tr_elements[0]:
    i+=1
    name=t.text_content()
    print ('%d:"%s"'%(i,name))
    col.append((name,[]))

#Since out first row is the header, data is stored on the second row onwards
for j in range(1,len(tr_elements)):
    #T is our j'th row
    T=tr_elements[j]

    #If row is not of size 10, the //tr data is not from our table 
    if len(T)!=10:
        break

    #i is the index of our column
    i=0

    #Iterate through each element of the row
    for t in T.iterchildren():
        data=t.text_content() 
        #Check if row is empty
        if i>0:
        #Convert any numerical value to integers
            try:
                data=int(data)
            except:
                pass
        #Append the data to the empty list of the i'th column
        col[i][1].append(data)
        #Increment i for the next column
        i+=1
Dict={title:column for (title,column) in col}
df=pd.DataFrame(Dict)

到目前为止的输出:

您可以粘贴 headers 和负载,然后使用 .post。我仍在学习如何正确使用它,并且不太确定到底需要什么(或者 "sensitive info" 是什么,这就是为什么我涂掉了其中的一些……就像我说的,我还在学习),但是设法 return json。

这将 return json 然后仅转换为数据帧。

您可以通过对页面执行 "Inspect" 来获取 headers 和有效载荷,然后单击 XHR(您可能需要刷新页面以便 gsrsearch 出现。然后只需点击它并滚动找到它。不过你必须把引号放在那里。

代码:

import json
import requests
from pandas.io.json import json_normalize


url='https://web3.ncaa.org/aprsearch/gsrsearch'

# Here's where you'll put your headers from Inspect
headers = {
'Accept': 'application/json, text/javascript, */*; q=0.01',
'Accept-Encoding': 'gzip, deflate, br',
'Accept-Language': 'en-US,en;q=0.9',
'Connection': 'keep-alive',
...
...
...
'X-Requested-With': 'XMLHttpRequest'}

# Here's where you put Form Data from Inspect
payload = {'schoolOrgId': '',
'conferenceOrgId':'', 
'sportCode': 'MFB',
'cohortYear': '2005', # I changed this to year 2005
'state':'',
... }




r = requests.post(url, headers=headers, data=payload)
jsonStr = r.text
jsonObj = json.loads(jsonStr)



df = json_normalize(jsonObj)

输出:

print (df)
     cohortYear  conferenceId  ...   sportDesc  state
0          2005           875  ...    Football     OH
1          2005           916  ...    Football     AL
2          2005           916  ...    Football     AL
3          2005           911  ...    Football     AL
4          2005         24312  ...    Football     AL
5          2005           846  ...    Football     NY
6          2005           916  ...    Football     MS
7          2005           912  ...    Football     NC
8          2005           905  ...    Football     AZ
9          2005           905  ...    Football     AZ
10         2005           818  ...    Football     AR
11         2005           911  ...    Football     AR
12         2005           911  ...    Football     AL
13         2005           902  ...    Football     TN
14         2005           875  ...    Football     IN
15         2005           826  ...    Football     SC
16         2005         25354  ...    Football     TX
17         2005           876  ...    Football     FL
18         2005          5486  ...    Football     ID
19         2005           821  ...    Football     MA
20         2005           875  ...    Football     OH
21         2005             0  ...    Football     UT
22         2005           865  ...    Football     RI
23         2005           846  ...    Football     RI
24         2005           838  ...    Football     PA
25         2005           875  ...    Football     NY
26         2005         21451  ...    Football     IN
27         2005             0  ...    Football     CA
28         2005           923  ...    Football     CA
29         2005           825  ...    Football     CA
..          ...           ...  ...         ...    ...
210        2005             0  ...    Football     MD
211        2005           923  ...    Football     UT
212        2005           905  ...    Football     UT
213        2005         21451  ...    Football     IN
214        2005           911  ...    Football     TN
215        2005           837  ...    Football     PA
216        2005           826  ...    Football     VA
217        2005           821  ...    Football     VA
218        2005           821  ...    Football     VA
219        2005           846  ...    Football     NY
220        2005           821  ...    Football     NC
221        2005           905  ...    Football     WA
222        2005           905  ...    Football     WA
223        2005           825  ...    Football     UT
224        2005           823  ...    Football     WV
225        2005           912  ...    Football     NC
226        2005           853  ...    Football     IL
227        2005           818  ...    Football     KY
228        2005           875  ...    Football     MI
229        2005           837  ...    Football     VA
230        2005           827  ...    Football     WI
231        2005          5486  ...    Football     WY
232        2005           865  ...    Football     CT
233        2005           853  ...    Football     OH
234        2005           914  ...    Football     AR
235        2005           912  ...    Football     NC
236        2005           826  ...    Football     NC
237        2005           826  ...    Football     SC
238        2005           916  ...    Football     AR
239        2005           912  ...    Football     SC

[240 rows x 12 columns]