如何在 for 循环内的一个 window 中制作 Pandas 数据框中列的子图

How can make subplots of columns in Pandas dataframe in one window inside of for-loop

* 请帮助它非常重要:为什么无法通过在 for 循环中使用 HeatMap 来获取 Pandas 数据帧的子图?

我正在尝试在迭代期间在 for 循环内的 pandas 数据帧中创建列的子图,因为我为每个循环绘制了 每个 480 个值 的结果将属于 A、B、C 的所有 3 个子图并排放在一个 window 中。我只找到一个答案 here which I'm afraid is not my case! @euri10 answered by using flat.

我的脚本如下:

# Import and call the needed libraries
import numpy as np
import pandas as pd
import os
import seaborn as sns
import matplotlib.pyplot as plt


'''
Take a list and create the formatted matrix
'''
def mkdf(ListOf480Numbers):
    normalMatrix = np.array_split(ListOf480Numbers,8)     #Take a list and create 8 array (Sections)
    fixMatrix = []
    for i in range(8):
        lines = np.array_split(normalMatrix[i],6)         #Split each section in lines (each line contains 10 cells from 0-9)
        newMatrix = [0,0,0,0,0,0]                         #Empty array to contain reordered lines
        for j in (1,3,5):
            newMatrix[j] = lines[j]                       #lines 1,3,5 remain equal
        for j in (0,2,4):
            newMatrix[j] = lines[j][::-1]                 #lines 2,4,6 are inverted
        fixMatrix.append(newMatrix)                 #After last update of format of table inverted (bottom-up zig-zag)
    return fixMatrix

'''
Print the matrix with the required format
'''
def print_df(fixMatrix):
    values = []
    for i in range(6):
        values.append([*fixMatrix[4][i], *fixMatrix[7][i]])  #lines form section 6 and 7 are side by side
    for i in range(6):
        values.append([*fixMatrix[5][i], *fixMatrix[6][i]])  #lines form section 4 and 5 are side by side
    for i in range(6):
        values.append([*fixMatrix[1][i], *fixMatrix[2][i]])  #lines form section 2 and 3 are side by side
    for i in range(6):
        values.append([*fixMatrix[0][i], *fixMatrix[3][i]])  #lines form section 0 and 1 are side by side
    df = pd.DataFrame(values)
    return (df)

'''
Normalizing Formula
'''

def normalize(value, min_value, max_value, min_norm, max_norm):
    new_value = ((max_norm - min_norm)*((value - min_value)/(max_value - min_value))) + min_norm
    return new_value

'''
Split data in three different lists A, B and C
'''

dft = pd.read_csv('D:\me4.TXT', header=None)
id_set = dft[dft.index % 4 == 0].astype('int').values
A = dft[dft.index % 4 == 1].values
B = dft[dft.index % 4 == 2].values
C = dft[dft.index % 4 == 3].values
data = {'A': A[:,0], 'B': B[:,0], 'C': C[:,0]}
#df contains all the data
df = pd.DataFrame(data, columns=['A','B','C'], index = id_set[:,0])  


'''
Data generation phase

'''

#next iteration create all plots, change the number of cycles
cycles = int(len(df)/480)
print(cycles)
for i in df:
    try:
        os.mkdir(i)
    except:
        pass
    min_val = df[i].min()
    min_nor = -1
    max_val = df[i].max()
    max_nor = 1
    for cycle in range(1):             #iterate thriugh all cycles range(1) by ====> range(int(len(df)/480))
        count =  '{:04}'.format(cycle)
        j = cycle * 480
        ordered_data = mkdf(df.iloc[j:j+480][i])
        csv = print_df(ordered_data)
        #Print .csv files contains matrix of each parameters by name of cycles respectively
        csv.to_csv(f'{i}/{i}{count}.csv', header=None, index=None)            
        if 'C' in i:
            min_nor = -40
            max_nor = 150
            #Applying normalization for C between [-40,+150]
            new_value3 = normalize(df['C'].iloc[j:j+480][i].values, min_val, max_val, -40, 150)
            n_cbar_kws = {"ticks":[-40,150,-20,0,25,50,75,100,125]}
            df3 = print_df(mkdf(new_value3))
        else:
            #Applying normalizayion for A,B between    [-1,+1]
            new_value1 = normalize(df['A'].iloc[j:j+480][i].values, min_val, max_val, -1, 1)
            new_value2 = normalize(df['B'].iloc[j:j+480][i].values, min_val, max_val, -1, 1)
            n_cbar_kws = {"ticks":[-1.0,-0.75,-0.50,-0.25,0.00,0.25,0.50,0.75,1.0]}
        df1 = print_df(mkdf(new_value1))
        df2 = print_df(mkdf(new_value2))    

        #Plotting parameters by using HeatMap
        plt.figure()
        sns.heatmap(df, vmin=min_nor, vmax=max_nor, cmap ='coolwarm', cbar_kws=n_cbar_kws)                             
        plt.title(i, fontsize=12, color='black', loc='left', style='italic')
        plt.axis('off')
        #Print .PNG images contains HeatMap plots of each parameters by name of cycles respectively
        plt.savefig(f'{i}/{i}{count}.png')  



        #plotting all columns ['A','B','C'] in-one-window side by side


        fig, axes = plt.subplots(nrows=1, ncols=3 , figsize=(20,10))

        plt.subplot(131)
        sns.heatmap(df1, vmin=-1, vmax=1, cmap ="coolwarm", linewidths=.75 , linecolor='black', cbar=True , cbar_kws={"ticks":[-1.0,-0.75,-0.5,-0.25,0.00,0.25,0.5,0.75,1.0]})
        fig.axes[-1].set_ylabel('[MPa]', size=20) #cbar_kws={'label': 'Celsius'}
        plt.title('A', fontsize=12, color='black', loc='left', style='italic')
        plt.axis('off')

        plt.subplot(132)
        sns.heatmap(df2, vmin=-1, vmax=1, cmap ="coolwarm", cbar=True , cbar_kws={"ticks":[-1.0,-0.75,-0.5,-0.25,0.00,0.25,0.5,0.75,1.0]})
        fig.axes[-1].set_ylabel('[Mpa]', size=20) #cbar_kws={'label': 'Celsius'}
        #sns.despine(left=True)
        plt.title('B', fontsize=12, color='black', loc='left', style='italic')
        plt.axis('off')

        plt.subplot(133)
        sns.heatmap(df3, vmin=-40, vmax=150, cmap ="coolwarm" , cbar=True , cbar_kws={"ticks":[-40,150,-20,0,25,50,75,100,125]}) 
        fig.axes[-1].set_ylabel('[°C]', size=20) #cbar_kws={'label': 'Celsius'}
        #sns.despine(left=True)
        plt.title('C', fontsize=12, color='black', loc='left', style='italic')
        plt.axis('off')


        plt.suptitle(f'Analysis of data in cycle Nr.: {count}', color='yellow', backgroundcolor='black', fontsize=48, fontweight='bold')
        plt.subplots_adjust(top=0.7, bottom=0.3, left=0.05, right=0.95, hspace=0.2, wspace=0.2)
        #plt.subplot_tool()
        plt.savefig(f'{i}/{i}{i}{count}.png') 
        plt.show()

到目前为止,我无法获得正确的输出,因为在每个周期中,它都会以不同的间隔打印 3 次 plot,例如。它在左侧打印 'A' 然后再次在 'B''C' 的名称下打印 'A' 在中间和右侧 in-one-window。它再次打印 'B' 3 次而不是一次并将其放在中间,最后它打印 'C' 3 次而不是一次并放在右侧它放在中间和左侧!

Target 是捕获 one-window 中所有 3 列 A、B & C 的子图45=]主for循环中的每个循环(每480个值乘以480个值)!

第一个循环:0000 -----> A、B、C 的子图 ----> 将其存储为 0000.png

第 2 个循环:0001 -----> A、B、C 的子图 ----> 将其存储为 0001.png ...

问题是在for循环中使用df,它传递A或B或C的值 3 次 虽然它应该传递它值分别属于每个列 一次 我提供了一张不成功输出的图片 here 这样你就可以准确地看到问题所在显然是

我想要的输出如下:

我还提供了 3 个周期的数据集示例文本文件:dataset

所以在查看了您的代码和您的要求之后,我想我知道问题出在哪里了。 您的 for 循环顺序错误。您希望每个周期都有一个新图形,包含每个 'A'、'B' 和 'C' 作为子图。

这意味着你的 outer 循环应该遍历循环,然后你的 inner 循环遍历 i,而你的缩进并且循环的顺序使您尝试通过 i (i='A', cycle=1) 在您的第一个循环中绘制所有 'A','B','C' 子图,而不是在您的第一个循环之后绘制第一个循环,所有 i (i='A','B','C', cycle=1).

这也是您遇到未定义 df3 的问题(如您对 this answer 的评论中所述)的原因。 df3 的定义在 if 块中检查是否 'C' in i,在你的第一次循环中,这个条件不满足,因此 df3 没有定义,但你仍在尝试绘制它!

你也遇到了和你另一个问题一样的问题NaN/inf值。

重新排列 for 循环和缩进并清理 NaN/inf 值得到以下代码:

#...
#df contains all the data
df = pd.DataFrame(data, columns=['A','B','C'], index = id_set[:,0])  
df = df.replace(np.inf, np.nan)
df = df.fillna(0)

'''
Data generation phase

'''

#next iteration create all plots, change the number of cycles
cycles = int(len(df)/480)
print(cycles)
for cycle in range(cycles):             #iterate thriugh all cycles range(1) by ====> range(int(len(df)/480))
    count =  '{:04}'.format(cycle)
    j = cycle * 480
    for i in df:
        try:
            os.mkdir(i)
        except:
            pass

        min_val = df[i].min()
        min_nor = -1
        max_val = df[i].max()
        max_nor = 1

        ordered_data = mkdf(df.iloc[j:j+480][i])
        csv = print_df(ordered_data)
        #Print .csv files contains matrix of each parameters by name of cycles respectively
        csv.to_csv(f'{i}/{i}{count}.csv', header=None, index=None)            
        if 'C' in i:
            min_nor = -40
            max_nor = 150
            #Applying normalization for C between [-40,+150]
            new_value3 = normalize(df['C'].iloc[j:j+480], min_val, max_val, -40, 150)
            n_cbar_kws = {"ticks":[-40,150,-20,0,25,50,75,100,125]}
            df3 = print_df(mkdf(new_value3))
        else:
            #Applying normalizayion for A,B between    [-1,+1]
            new_value1 = normalize(df['A'].iloc[j:j+480], min_val, max_val, -1, 1)
            new_value2 = normalize(df['B'].iloc[j:j+480], min_val, max_val, -1, 1)
            n_cbar_kws = {"ticks":[-1.0,-0.75,-0.50,-0.25,0.00,0.25,0.50,0.75,1.0]}
            df1 = print_df(mkdf(new_value1))
            df2 = print_df(mkdf(new_value2))    

    #        #Plotting parameters by using HeatMap
    #        plt.figure()
    #        sns.heatmap(df, vmin=min_nor, vmax=max_nor, cmap ='coolwarm', cbar_kws=n_cbar_kws)                             
    #        plt.title(i, fontsize=12, color='black', loc='left', style='italic')
    #        plt.axis('off')
    #        #Print .PNG images contains HeatMap plots of each parameters by name of cycles respectively
    #        plt.savefig(f'{i}/{i}{count}.png')  


    #plotting all columns ['A','B','C'] in-one-window side by side
    fig, axes = plt.subplots(nrows=1, ncols=3 , figsize=(20,10))

    plt.subplot(131)
    sns.heatmap(df1, vmin=-1, vmax=1, cmap ="coolwarm", linewidths=.75 , linecolor='black', cbar=True , cbar_kws={"ticks":[-1.0,-0.75,-0.5,-0.25,0.00,0.25,0.5,0.75,1.0]})
    fig.axes[-1].set_ylabel('[MPa]', size=20) #cbar_kws={'label': 'Celsius'}
    plt.title('A', fontsize=12, color='black', loc='left', style='italic')
    plt.axis('off')

    plt.subplot(132)
    sns.heatmap(df2, vmin=-1, vmax=1, cmap ="coolwarm", cbar=True , cbar_kws={"ticks":[-1.0,-0.75,-0.5,-0.25,0.00,0.25,0.5,0.75,1.0]})
    fig.axes[-1].set_ylabel('[Mpa]', size=20) #cbar_kws={'label': 'Celsius'}
    #sns.despine(left=True)
    plt.title('B', fontsize=12, color='black', loc='left', style='italic')
    plt.axis('off')

    plt.subplot(133)
    sns.heatmap(df3, vmin=-40, vmax=150, cmap ="coolwarm" , cbar=True , cbar_kws={"ticks":[-40,150,-20,0,25,50,75,100,125]}) 
    fig.axes[-1].set_ylabel('[°C]', size=20) #cbar_kws={'label': 'Celsius'}
    #sns.despine(left=True)
    plt.title('C', fontsize=12, color='black', loc='left', style='italic')
    plt.axis('off')


    plt.suptitle(f'Analysis of data in cycle Nr.: {count}', color='yellow', backgroundcolor='black', fontsize=48, fontweight='bold')
    plt.subplots_adjust(top=0.7, bottom=0.3, left=0.05, right=0.95, hspace=0.2, wspace=0.2)
    #plt.subplot_tool()
    plt.savefig(f'{i}/{i}{i}{count}.png') 
    plt.show()

这会为您提供以下三张图像,作为三个单独的图形以及您提供的数据:

Figure 1, Figure 2, Figure 3

总的来说,你的代码比较乱。我明白了,如果你是编程新手,只是想分析你的数据,你可以做任何有用的事情,不管它是否漂亮。

但是,我认为混乱的代码意味着您无法正确查看脚本的底层逻辑,这就是您遇到此问题的原因。

如果您再次遇到类似的问题,我会建议您写出一些包含所有循环的 'pseudo code' 并尝试思考您在每个循环中要完成的任务。