获得成对差异
Getting pairwise differences
我正在尝试获取不同地区之间价格的成对差异。我的数据如下所示:
table=NULL
table$id= 1:9
table$locality= c("A", "B", "C")
table$price= rnorm(9, 444, 322)
table$concat=paste(table$id, table$locality)
final=data.frame(table)
final
id locality price concat
1 A 379.1501 1 A
2 B 792.3608 2 B
3 C 762.0627 3 C
4 A 439.0378 4 A
5 B 100.2860 5 B
6 C 830.2024 6 C
7 A 148.5925 7 A
8 B 668.3819 8 B
9 C 510.3919 9 C
我的目标是尽可能得到一个像这个变量的table,在我下面table concat 是id:
diff_A-B | diff_A-C | diff_B-C
1A-2B | 1A-3C | 2B-3C
1A-5B | 1A-6C | 2B-6C
1A-8B | 1A-9C | 2B-9C
4A-2B | 4A-3C | 5B-3C
4A-5B | 4A-6C | 5B-6C
4A-8B | 4A-9C | 5B-9C
7A-2B | 7A-3C | 8B-3C
7A-5B | 7A-6C | 8B-6C
7A-8B | 7A-9C | 8B-9C
我试过了:
library(dplyr)
table %>%
arrange(id, locality) %>%
group_by(concat) %>%
mutate(variables=outer(price,price, "-"))
但是输出没有显示我需要的结果。
如有任何建议,我们将不胜感激。
首先我们将条目按 3 分组
final$group_number <- (final$id -1) %/%3 + 1
使用扩展运算符,您可以将行转换为列,然后简单地应用数学运算符来找出差异
final %>%
select(group_number, locality, price) %>%
spread(locality, price) %>%
mutate(diff_A_B = A - B,diff_B_C = B - C, diff_C_A = C - A )
希望对您有所帮助!
终于可以得到想要的输出了,感谢@Aakash Yadav 的帮助:
table=NULL
table$id= 1:9
table$locality= c("A", "B", "C")
table$price= rnorm(9, 444, 322)
table$concat=paste(table$id, table$locality)
final=data.frame(table)
final
id locality price concat
1 1 A 740.98988 1 A
2 2 B 714.53925 2 B
3 3 C -80.83328 3 C
4 4 A 20.11773 4 A
5 5 B 423.78615 5 B
6 6 C 155.25605 6 C
7 7 A 806.36096 7 A
8 8 B 182.55169 8 B
9 9 C 682.04208 9 C
final$group_number <- (final$id -1) %/%3 + 1
library(dplyr)
library(tidyr)
w=final %>%
select(group_number, locality, price) %>%
spread(locality, price)
m1= abs(outer(w$A,w$B, "-"))
m11=t(m1)
A_B=as.vector(m11)
m2=abs(outer(w$A,w$C, "-"))
m22=t(m2)
A_C=as.vector(m22)
m3=abs(outer(w$B,w$C, "-"))
m3=t(m3)
B_C=as.vector(m3)
df=data.frame(A_B, A_C, B_C)
df
A_B A_C B_C
1 26.45063 821.82315 795.37252
2 317.20373 585.73383 559.28320
3 558.43819 58.94779 32.49717
4 694.42152 100.95100 504.61942
5 403.66842 135.13832 268.53010
6 162.43396 661.92435 258.25594
7 91.82171 887.19423 263.38496
8 382.57481 651.10491 27.29564
9 623.80927 124.31888 499.49039
我正在尝试获取不同地区之间价格的成对差异。我的数据如下所示:
table=NULL
table$id= 1:9
table$locality= c("A", "B", "C")
table$price= rnorm(9, 444, 322)
table$concat=paste(table$id, table$locality)
final=data.frame(table)
final
id locality price concat
1 A 379.1501 1 A
2 B 792.3608 2 B
3 C 762.0627 3 C
4 A 439.0378 4 A
5 B 100.2860 5 B
6 C 830.2024 6 C
7 A 148.5925 7 A
8 B 668.3819 8 B
9 C 510.3919 9 C
我的目标是尽可能得到一个像这个变量的table,在我下面table concat 是id:
diff_A-B | diff_A-C | diff_B-C
1A-2B | 1A-3C | 2B-3C
1A-5B | 1A-6C | 2B-6C
1A-8B | 1A-9C | 2B-9C
4A-2B | 4A-3C | 5B-3C
4A-5B | 4A-6C | 5B-6C
4A-8B | 4A-9C | 5B-9C
7A-2B | 7A-3C | 8B-3C
7A-5B | 7A-6C | 8B-6C
7A-8B | 7A-9C | 8B-9C
我试过了:
library(dplyr)
table %>%
arrange(id, locality) %>%
group_by(concat) %>%
mutate(variables=outer(price,price, "-"))
但是输出没有显示我需要的结果。
如有任何建议,我们将不胜感激。
首先我们将条目按 3 分组
final$group_number <- (final$id -1) %/%3 + 1
使用扩展运算符,您可以将行转换为列,然后简单地应用数学运算符来找出差异
final %>%
select(group_number, locality, price) %>%
spread(locality, price) %>%
mutate(diff_A_B = A - B,diff_B_C = B - C, diff_C_A = C - A )
希望对您有所帮助!
终于可以得到想要的输出了,感谢@Aakash Yadav 的帮助:
table=NULL
table$id= 1:9
table$locality= c("A", "B", "C")
table$price= rnorm(9, 444, 322)
table$concat=paste(table$id, table$locality)
final=data.frame(table)
final
id locality price concat
1 1 A 740.98988 1 A
2 2 B 714.53925 2 B
3 3 C -80.83328 3 C
4 4 A 20.11773 4 A
5 5 B 423.78615 5 B
6 6 C 155.25605 6 C
7 7 A 806.36096 7 A
8 8 B 182.55169 8 B
9 9 C 682.04208 9 C
final$group_number <- (final$id -1) %/%3 + 1
library(dplyr)
library(tidyr)
w=final %>%
select(group_number, locality, price) %>%
spread(locality, price)
m1= abs(outer(w$A,w$B, "-"))
m11=t(m1)
A_B=as.vector(m11)
m2=abs(outer(w$A,w$C, "-"))
m22=t(m2)
A_C=as.vector(m22)
m3=abs(outer(w$B,w$C, "-"))
m3=t(m3)
B_C=as.vector(m3)
df=data.frame(A_B, A_C, B_C)
df
A_B A_C B_C
1 26.45063 821.82315 795.37252
2 317.20373 585.73383 559.28320
3 558.43819 58.94779 32.49717
4 694.42152 100.95100 504.61942
5 403.66842 135.13832 268.53010
6 162.43396 661.92435 258.25594
7 91.82171 887.19423 263.38496
8 382.57481 651.10491 27.29564
9 623.80927 124.31888 499.49039