使用 python sdk 在 Azure 中获取 cpu 虚拟机利用率

get cpu utilization of virtual machines in azure using python sdk

我正在尝试使用 azure python API 获得 CPU 虚拟机的利用率。 就像一个虚拟机有 2 cpus,我需要整体利用率(意味着 cpu1+ cpu2)。

获得cpu虚拟机利用率的可能方法有哪些?

可能您可以使用 python 的 Azure 监控库来获取 Azure VM 上的 百分比 CPU 指标。安装 azure-mgmt-monitor 包并在 MetricsOperations class

中调用 list 方法

Example - Metrics

import datetime
from azure.mgmt.monitor import MonitorManagementClient

# Get the ARM id of your resource. You might chose to do a "get"
# using the according management or to build the URL directly
# Example for a ARM VM
resource_id = (
    "subscriptions/{}/"
    "resourceGroups/{}/"
    "providers/Microsoft.Compute/virtualMachines/{}"
).format(subscription_id, resource_group_name, vm_name)

# create client
client = MonitorManagementClient(
    credentials,
    subscription_id
)

# You can get the available metrics of this specific resource
for metric in client.metric_definitions.list(resource_id):
    # azure.monitor.models.MetricDefinition
    print("{}: id={}, unit={}".format(
        metric.name.localized_value,
        metric.name.value,
        metric.unit
    ))

# Example of result for a VM:
# Percentage CPU: id=Percentage CPU, unit=Unit.percent
# Network In: id=Network In, unit=Unit.bytes
# Network Out: id=Network Out, unit=Unit.bytes
# Disk Read Bytes: id=Disk Read Bytes, unit=Unit.bytes
# Disk Write Bytes: id=Disk Write Bytes, unit=Unit.bytes
# Disk Read Operations/Sec: id=Disk Read Operations/Sec, unit=Unit.count_per_second
# Disk Write Operations/Sec: id=Disk Write Operations/Sec, unit=Unit.count_per_second

# Get CPU total of yesterday for this VM, by hour

today = datetime.datetime.now().date()
yesterday = today - datetime.timedelta(days=1)

metrics_data = client.metrics.list(
    resource_id,
    timespan="{}/{}".format(yesterday, today),
    interval='PT1H',
    metric='Percentage CPU',
    aggregation='Total'
)

for item in metrics_data.value:
    # azure.mgmt.monitor.models.Metric
    print("{} ({})".format(item.name.localized_value, item.unit.name))
    for timeserie in item.timeseries:
        for data in timeserie.data:
            # azure.mgmt.monitor.models.MetricData
            print("{}: {}".format(data.time_stamp, data.total))

# Example of result:
# Percentage CPU (percent)
# 2016-11-16 00:00:00+00:00: 72.0
# 2016-11-16 01:00:00+00:00: 90.59
# 2016-11-16 02:00:00+00:00: 60.58
# 2016-11-16 03:00:00+00:00: 65.78
# 2016-11-16 04:00:00+00:00: 43.96
# 2016-11-16 05:00:00+00:00: 43.96
# 2016-11-16 06:00:00+00:00: 114.9
# 2016-11-16 07:00:00+00:00: 45.4