开环或闭环(反应式)路径规划?
Open-loop or Closed-loop (reactive) Path planning?
我们在做防撞路径规划的时候,可以实现开环或者闭环。
开环方法是使用固有的简化模型,例如 Bicycle 模型,并通过设计控制器(MPC 或其他)以最佳输入传播系统。然而,随着时间的推移,由于建模误差,简化模型的状态肯定会偏离真实状态,因此我们需要用真实系统状态(通过测量或估计获得)重新初始化路径规划器的状态。这样,我们就有了闭环规划。问题是这种重新初始化的频率是多少?较高的重新初始化频率使规划更准确,但同时也可能导致下级控制器出现锯齿状参考。
这个问题的答案非常依赖于系统。你说开环系统是不可实现的是正确的。 Planning/control 通常分两个阶段完成。
1)轨迹生成:这通常是预测性地或在开环(MPC 中的 P)中完成的。根据较低级别控制的能力,这不需要太频繁地进行。例如,如果轨迹执行偏离您的计划超过某个阈值(或超出稳定性保证),您将不得不重新计划。
2) 轨迹following/execution:给定标称轨迹(包括标称开环控制),较低级别的控制器会尝试尽可能地遵循该轨迹。这将包括一个稳定控制器,例如 LQR 或类似的东西。
了解 "too fast" 重新规划的关键是您的系统随时间漂移的程度以及您想要产生什么样的安全保证。例如,如果您在开环计划中允许障碍物周围有 5 厘米的缓冲区,那么重新计划的适当时间是机器人偏离轨迹(例如在 R3 中)某个阈值小于 5 厘米时。如果您晚于此重新规划,则无法保证您的机器人不会与环境中的静态障碍物发生碰撞。
显然,这取决于您的模型的准确性以及您的低级控制在遵循该轨迹方面的表现。理想情况下,如果您的模型相当准确并且您的低级控制非常好,则无需重新规划(假设是静态环境)。
我们在做防撞路径规划的时候,可以实现开环或者闭环。 开环方法是使用固有的简化模型,例如 Bicycle 模型,并通过设计控制器(MPC 或其他)以最佳输入传播系统。然而,随着时间的推移,由于建模误差,简化模型的状态肯定会偏离真实状态,因此我们需要用真实系统状态(通过测量或估计获得)重新初始化路径规划器的状态。这样,我们就有了闭环规划。问题是这种重新初始化的频率是多少?较高的重新初始化频率使规划更准确,但同时也可能导致下级控制器出现锯齿状参考。
这个问题的答案非常依赖于系统。你说开环系统是不可实现的是正确的。 Planning/control 通常分两个阶段完成。
1)轨迹生成:这通常是预测性地或在开环(MPC 中的 P)中完成的。根据较低级别控制的能力,这不需要太频繁地进行。例如,如果轨迹执行偏离您的计划超过某个阈值(或超出稳定性保证),您将不得不重新计划。
2) 轨迹following/execution:给定标称轨迹(包括标称开环控制),较低级别的控制器会尝试尽可能地遵循该轨迹。这将包括一个稳定控制器,例如 LQR 或类似的东西。
了解 "too fast" 重新规划的关键是您的系统随时间漂移的程度以及您想要产生什么样的安全保证。例如,如果您在开环计划中允许障碍物周围有 5 厘米的缓冲区,那么重新计划的适当时间是机器人偏离轨迹(例如在 R3 中)某个阈值小于 5 厘米时。如果您晚于此重新规划,则无法保证您的机器人不会与环境中的静态障碍物发生碰撞。
显然,这取决于您的模型的准确性以及您的低级控制在遵循该轨迹方面的表现。理想情况下,如果您的模型相当准确并且您的低级控制非常好,则无需重新规划(假设是静态环境)。