How to fix, "error: (-215) pbBlob.raw_data_type() == caffe::FLOAT16 in function blobFromProto" when running neural network in OpenCV
How to fix, "error: (-215) pbBlob.raw_data_type() == caffe::FLOAT16 in function blobFromProto" when running neural network in OpenCV
我目前正在尝试使用 Nvidia DIGITS 在用于对象检测的自定义数据集上训练 CNN,最终我想 运行 在 Nvidia Jetson TX2 上使用该网络。我按照推荐的说明从 Docker 下载了 DIGITS 图像,我能够以合理的精度成功训练网络。但是当我尝试使用 OpenCv 在 python 中 运行 我的网络时,我得到了这个错误,
”错误:函数中的 (-215) pbBlob.raw_data_type() == caffe::FLOAT16
blobFromProto
我在其他一些帖子中了解到,这是由于 DIGITS 以与 OpenCv 的 DNN 功能不兼容的形式存储其网络。
在训练我的网络之前,我尝试在 DIGITS 中选择选项,该选项应该使网络与其他软件兼容,但是这似乎根本没有改变网络,当我遇到同样的错误时运行宁我的 python 脚本。这是我 运行 创建错误的脚本(它来自本教程 https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv/)
# import the necessary packages
import numpy as np
import argparse
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image")
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["dontcare", "HatchPanel"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# load the input image and construct an input blob for the image
# by resizing to a fixed 300x300 pixels and then normalizing it
# (note: normalization is done via the authors of the MobileNet SSD
# implementation)
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843,
(300, 300), 127.5)
# pass the blob through the network and obtain the detections and
# predictions
print("[INFO] computing object detections...")
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the
# prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence > args["confidence"]:
# extract the index of the class label from the `detections`,
# then compute the (x, y)-coordinates of the bounding box for
# the object
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# display the prediction
label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
print("[INFO] {}".format(label))
cv2.rectangle(image, (startX, startY), (endX, endY),
COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(image, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)
这应该输出脚本调用中指定的图像,神经网络的输出绘制在图像之上。但是相反,脚本因前面提到的错误而崩溃。我已经看到其他人的线程也有同样的错误,但到目前为止,none 他们已经找到了适用于当前版本 DIGITS 的解决方案。
我的完整设置如下:
OS: Ubuntu 16.04
Nvidia DIGITS Docker 图片版本:19.01-caffe
DIGITS 版本:6.1.1
咖啡版本:0.17.2
咖啡风味:Nvidia
OpenCV 版本:4.0.0
Python版本:3.5
非常感谢任何帮助。
哈里森·麦金太尔,谢谢!此 PR 修复了它:https://github.com/opencv/opencv/pull/13800. Please note that there is a layer with type "ClusterDetections". It's not supported by OpenCV but you can implement it using custom layers mechanic (see a tutorial)
我目前正在尝试使用 Nvidia DIGITS 在用于对象检测的自定义数据集上训练 CNN,最终我想 运行 在 Nvidia Jetson TX2 上使用该网络。我按照推荐的说明从 Docker 下载了 DIGITS 图像,我能够以合理的精度成功训练网络。但是当我尝试使用 OpenCv 在 python 中 运行 我的网络时,我得到了这个错误,
”错误:函数中的 (-215) pbBlob.raw_data_type() == caffe::FLOAT16 blobFromProto
我在其他一些帖子中了解到,这是由于 DIGITS 以与 OpenCv 的 DNN 功能不兼容的形式存储其网络。
在训练我的网络之前,我尝试在 DIGITS 中选择选项,该选项应该使网络与其他软件兼容,但是这似乎根本没有改变网络,当我遇到同样的错误时运行宁我的 python 脚本。这是我 运行 创建错误的脚本(它来自本教程 https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv/)
# import the necessary packages
import numpy as np
import argparse
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image")
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["dontcare", "HatchPanel"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# load the input image and construct an input blob for the image
# by resizing to a fixed 300x300 pixels and then normalizing it
# (note: normalization is done via the authors of the MobileNet SSD
# implementation)
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843,
(300, 300), 127.5)
# pass the blob through the network and obtain the detections and
# predictions
print("[INFO] computing object detections...")
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the
# prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence > args["confidence"]:
# extract the index of the class label from the `detections`,
# then compute the (x, y)-coordinates of the bounding box for
# the object
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# display the prediction
label = "{}: {:.2f}%".format(CLASSES[idx], confidence * 100)
print("[INFO] {}".format(label))
cv2.rectangle(image, (startX, startY), (endX, endY),
COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(image, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)
这应该输出脚本调用中指定的图像,神经网络的输出绘制在图像之上。但是相反,脚本因前面提到的错误而崩溃。我已经看到其他人的线程也有同样的错误,但到目前为止,none 他们已经找到了适用于当前版本 DIGITS 的解决方案。
我的完整设置如下:
OS: Ubuntu 16.04
Nvidia DIGITS Docker 图片版本:19.01-caffe
DIGITS 版本:6.1.1
咖啡版本:0.17.2
咖啡风味:Nvidia
OpenCV 版本:4.0.0
Python版本:3.5
非常感谢任何帮助。
哈里森·麦金太尔,谢谢!此 PR 修复了它:https://github.com/opencv/opencv/pull/13800. Please note that there is a layer with type "ClusterDetections". It's not supported by OpenCV but you can implement it using custom layers mechanic (see a tutorial)