仅使用标准库按另一列中分组值的一列累计总数对文本文件进行排序?

Sorting a text file by cumulative total of one column from grouped values in another column using standard library only?

我有一个包含这样行的文件

id, car_type, cost
1, benz, 60000
2, benz, 55000
3, bmw, 30000
4, benz, 25000
5, bmw, 26000
6, ford, 5000

我想按每个 car_type 的总成本对该文件进行排序。例如,“benz”的总费用为 60000 + 55000 + 25000 = 14000

所以最终输出应该是

benz, 140000
bmw, 56000
ford, 5000

到目前为止,这是我拥有的:

file = "small_sample.txt"


f=open(file,"r")
lines=f.readlines()[1:]
car_and_cost ={}
for x in lines:
    cost = x.split(',')[4].rstrip('\n')
    car_and_cost.update({x.split(',')[3]:float(cost)})
f.close()
print(car_and_cost)

new_dic = {}
for key,lis in car_and_cost.items():
    new_dic[key] = sum(lis)
print(new_dic)

我几乎被困住了。首先,我由此生成的字典总计不正确,而且我根本不知道如何按值

对字典进行排序

这是一种使用 csvcollections 模块的方法

例如:

import csv
from collections import defaultdict, OrderedDict

result = defaultdict(int)

with open(filename) as infile:
    reader = csv.DictReader(infile)
    for row in reader:                    #Iterate Each row
        result[row[" car_type"]] += int(row[" cost"])   #Add costs

print(OrderedDict(sorted(result.items(), key=lambda x: x[1], reverse=True)))

输出:

OrderedDict([(' benz', 140000), (' bmw', 56000), (' ford', 5000)])

使用pandas:

import pandas as pd
df = pd.read_csv(logFile)

result = df.groupby(' car_type').sum()
print(result)

输出:

           id    cost
 car_type            
 benz       7  140000
 bmw        8   56000
 ford       6    5000

编辑:

logFile = "tem.csv"
array = []
import csv

with open("tem.csv", "r+") as fin:
    for row in csv.reader(fin):
        array.append(row[1:])

dd = {k: 0 for k in dict(array).keys()}
for x in array: dd[x[0]] += int(x[1])
print(dd)

输出:

{' benz': 140000, ' bmw': 56000, ' ford': 5000}

或者,如果您希望它们出现在列表中:

print([[k,v] for k,v in  dd.items()])

输出:

[[' benz', 140000], [' bmw', 56000], [' ford', 5000]]