对齐顶轴和底轴的刻度坐标
Aligning tick coordinates of top and bottom axis
我想构建一个图形,在其底部 x 轴上具有一组刻度,在其顶部 x 轴上具有另一组与底部刻度对齐的刻度。特别是在我的例子中,这些是批次和时代。对于底部的每个 n
个批处理点(不一定是刻度),我希望顶部有一个纪元刻度。考虑这个例子:
import numpy as np
import matplotlib.pyplot as plt
batches = np.arange(1,101)
epoch_ends = batches[[(i*10)-1 for i in range(1,11)]]
accuracy = np.apply_along_axis(arr=batches, axis=0, func1d=lambda x : x/len(batches))
loss = np.apply_along_axis(arr=batches, axis=0, func1d=lambda x : 1 - (x/len(batches)))
fig, ax1 = plt.subplots( nrows=1, ncols=1 )
ax2 = ax1.twinx()
ax3 = ax1.twiny()
ax1.set_xlabel('batches')
ax1.set_xticks(np.arange(1, len(batches)+1, 9))
ax1.set_ylabel('accuracy')
ax1.grid()
ax2.set_ylabel('loss')
ax2.set_yticklabels(np.linspace(3, 10, 9))
ax3.set_xlabel('epochs')
ax3.set_xticks(epoch_ends)
ax3.set_xticklabels(range(1, len(epoch_ends)+1))
acc_plt = ax1.plot(batches, accuracy, color='red', label='acc')
loss_plt = ax2.plot(batches, loss, color='blue', label='loss')
lns = acc_plt+loss_plt
labs = [l.get_label() for l in lns]
ax1.legend(lns, labs, loc=2)
plt.show()
batches
和epoch_ends
分别是这样的
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100]
[ 10 20 30 40 50 60 70 80 90 100]
所以我希望 epoch tick 1 与 batch x-coorrdiante 10、2 与 20 等对齐
但是正如你在图片中看到的,他们并没有排成一行。
我需要更改代码中的哪些内容才能使其正常工作?
这是对齐它们的一种方法。思路如下:
- 首先使用 (
ax1
) 在较低的 x 轴上绘制数据
- 然后使用
ax3.set_xlim(ax1.get_xlim())
将上 x 轴的限制设置为与下 x 轴相同
- 然后将上部 x 轴的刻度设置在对应于下部 x 轴值 (10, 20, 30, ..., 90, 100) 的位置
- 最后,使用
ax3.set_xticklabels()
重命名刻度标签。
这是代码:我正在用注释替换您的代码中已有的部分 #
。
# imports and define data and compute accuracy and loss here
# Initiate figure and axis objects here
ax1.set_xlabel('batches')
ax1.set_xticks(np.arange(1, len(batches)+1, 9))
ax1.set_ylabel('accuracy')
ax1.grid()
acc_plt = ax1.plot(batches, accuracy, color='red', label='acc')
loss_plt = ax2.plot(batches, loss, color='blue', label='loss')
ax2.set_ylabel('loss')
ax2.set_yticklabels(np.linspace(3, 10, 9))
new_tick_locations = np.arange(1, 11)*10
new_tick_labels = range(1, 11)
ax3.set_xlabel('epochs')
ax3.set_xlim(ax1.get_xlim())
ax3.set_xticks(new_tick_locations)
ax3.set_xticklabels(new_tick_labels)
# Set legends and show the plot
这会失去对刻度的控制(你没有说是否需要),但会像你说的那样排列两个 x 轴:
(新行有注释)
import numpy as np
import matplotlib.pyplot as plt
batches = np.arange(1,101)
epoch_ends = batches[[(i*10)-1 for i in range(1,11)]]
accuracy = np.apply_along_axis(arr=batches, axis=0, func1d=lambda x : x/len(batches))
loss = np.apply_along_axis(arr=batches, axis=0, func1d=lambda x : 1 - (x/len(batches)))
fig, ax1 = plt.subplots( nrows=1, ncols=1 )
ax2 = ax1.twinx()
ax3 = ax1.twiny()
ax1.set_xlabel('batches')
#ax1.set_xticks(np.arange(1, len(batches)+1, 9))
ax1.set_xlim(0, 100) # Set xlim
ax1.set_ylabel('accuracy')
ax1.grid()
ax2.set_ylabel('loss')
ax2.set_yticklabels(np.linspace(3, 10, 9))
ax3.set_xlabel('epochs')
#ax3.set_xticks(epoch_ends)
#ax3.set_xticklabels(range(1, len(epoch_ends)+1))
ax3.set_xlim(0, 10) # Set xlim
acc_plt = ax1.plot(batches, accuracy, color='red', label='acc')
loss_plt = ax2.plot(batches, loss, color='blue', label='loss')
lns = acc_plt+loss_plt
labs = [l.get_label() for l in lns]
ax1.legend(lns, labs, loc=2)
plt.show()
我想构建一个图形,在其底部 x 轴上具有一组刻度,在其顶部 x 轴上具有另一组与底部刻度对齐的刻度。特别是在我的例子中,这些是批次和时代。对于底部的每个 n
个批处理点(不一定是刻度),我希望顶部有一个纪元刻度。考虑这个例子:
import numpy as np
import matplotlib.pyplot as plt
batches = np.arange(1,101)
epoch_ends = batches[[(i*10)-1 for i in range(1,11)]]
accuracy = np.apply_along_axis(arr=batches, axis=0, func1d=lambda x : x/len(batches))
loss = np.apply_along_axis(arr=batches, axis=0, func1d=lambda x : 1 - (x/len(batches)))
fig, ax1 = plt.subplots( nrows=1, ncols=1 )
ax2 = ax1.twinx()
ax3 = ax1.twiny()
ax1.set_xlabel('batches')
ax1.set_xticks(np.arange(1, len(batches)+1, 9))
ax1.set_ylabel('accuracy')
ax1.grid()
ax2.set_ylabel('loss')
ax2.set_yticklabels(np.linspace(3, 10, 9))
ax3.set_xlabel('epochs')
ax3.set_xticks(epoch_ends)
ax3.set_xticklabels(range(1, len(epoch_ends)+1))
acc_plt = ax1.plot(batches, accuracy, color='red', label='acc')
loss_plt = ax2.plot(batches, loss, color='blue', label='loss')
lns = acc_plt+loss_plt
labs = [l.get_label() for l in lns]
ax1.legend(lns, labs, loc=2)
plt.show()
batches
和epoch_ends
分别是这样的
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100]
[ 10 20 30 40 50 60 70 80 90 100]
所以我希望 epoch tick 1 与 batch x-coorrdiante 10、2 与 20 等对齐
但是正如你在图片中看到的,他们并没有排成一行。
我需要更改代码中的哪些内容才能使其正常工作?
这是对齐它们的一种方法。思路如下:
- 首先使用 (
ax1
) 在较低的 x 轴上绘制数据
- 然后使用
ax3.set_xlim(ax1.get_xlim())
将上 x 轴的限制设置为与下 x 轴相同
- 然后将上部 x 轴的刻度设置在对应于下部 x 轴值 (10, 20, 30, ..., 90, 100) 的位置
- 最后,使用
ax3.set_xticklabels()
重命名刻度标签。
这是代码:我正在用注释替换您的代码中已有的部分 #
。
# imports and define data and compute accuracy and loss here
# Initiate figure and axis objects here
ax1.set_xlabel('batches')
ax1.set_xticks(np.arange(1, len(batches)+1, 9))
ax1.set_ylabel('accuracy')
ax1.grid()
acc_plt = ax1.plot(batches, accuracy, color='red', label='acc')
loss_plt = ax2.plot(batches, loss, color='blue', label='loss')
ax2.set_ylabel('loss')
ax2.set_yticklabels(np.linspace(3, 10, 9))
new_tick_locations = np.arange(1, 11)*10
new_tick_labels = range(1, 11)
ax3.set_xlabel('epochs')
ax3.set_xlim(ax1.get_xlim())
ax3.set_xticks(new_tick_locations)
ax3.set_xticklabels(new_tick_labels)
# Set legends and show the plot
这会失去对刻度的控制(你没有说是否需要),但会像你说的那样排列两个 x 轴: (新行有注释)
import numpy as np
import matplotlib.pyplot as plt
batches = np.arange(1,101)
epoch_ends = batches[[(i*10)-1 for i in range(1,11)]]
accuracy = np.apply_along_axis(arr=batches, axis=0, func1d=lambda x : x/len(batches))
loss = np.apply_along_axis(arr=batches, axis=0, func1d=lambda x : 1 - (x/len(batches)))
fig, ax1 = plt.subplots( nrows=1, ncols=1 )
ax2 = ax1.twinx()
ax3 = ax1.twiny()
ax1.set_xlabel('batches')
#ax1.set_xticks(np.arange(1, len(batches)+1, 9))
ax1.set_xlim(0, 100) # Set xlim
ax1.set_ylabel('accuracy')
ax1.grid()
ax2.set_ylabel('loss')
ax2.set_yticklabels(np.linspace(3, 10, 9))
ax3.set_xlabel('epochs')
#ax3.set_xticks(epoch_ends)
#ax3.set_xticklabels(range(1, len(epoch_ends)+1))
ax3.set_xlim(0, 10) # Set xlim
acc_plt = ax1.plot(batches, accuracy, color='red', label='acc')
loss_plt = ax2.plot(batches, loss, color='blue', label='loss')
lns = acc_plt+loss_plt
labs = [l.get_label() for l in lns]
ax1.legend(lns, labs, loc=2)
plt.show()