R 组合,寻找比基本 R 更快更有效的方式(包、代码、并行 cpu)

R combinations, looking for faster and more efficient way(package,code,parallel cpu) than basic R

我正在使用基本的 R 进行组合。

例如,假设我有一个 2 行 5 列的矩阵:

 z<-matrix(c(1, 2, 1, 3, 2, 2, 1, 3, 2, 1),nrow=2,ncol=5,byrow = TRUE)

[,1] [,2] [,3] [,4] [,5]

[1,]    1    2    1    3    2

[2,]    2    1    3    2    1

我正在使用下面的代码组合 5 列中的 3 组:

l<- apply(X = combn(seq_len(ncol(z)), 3),MAR = 2,FUN = function(jj) {apply(z[, jj], 1, paste, collapse="") })

这导出了我需要的东西:

[,1]  [,2]  [,3]  [,4]  [,5]  [,6]  [,7]  [,8]  [,9]  [,10]

[1,] "121" "123" "122" "113" "112" "132" "213" "212" "232" "132"

[2,] "213" "212" "211" "232" "231" "221" "132" "131" "121" "321"

当我在矩阵中使用大数据时,问题就开始了, 例如,当我有一个包含 15000 行和 17 列的矩阵时,我需要 17 列中的 10 组组合。

在此示例中,此导出需要很长时间。

对于这个组合示例,有没有比基本 R(可能是一些包或代码,或使用并行 cpu's)更快更有效的方法?

我正在使用 Windows 7 64 位、FX 8320、16GB 内存。

正如@inscaven 指出的那样,实时紧缩来自 paste。如果我们只需要生成所有 17 选 10 组合 15000 次,随着 RarrangementsRcppAlgos 中几个高度优化包的出现,这不会花那么长时间(我是作者):

set.seed(101)
testMat <- matrix(sample(1000, 15000 * 17, TRUE), nrow = 15000)

library(arrangements)
system.time(lapply(1:15000, function(x) {
    temp <- combinations(x = testMat[x, ], k = 10)
    x
}))
  user  system elapsed 
 6.879   2.133   9.014

library(RcppAlgos)
system.time(lapply(1:15000, function(x) {
    temp <- comboGeneral(testMat[x, ], 10)
    x
}))
  user  system elapsed 
 5.770   2.178   7.953

base R 中加载的 combn 相比:

system.time(lapply(1:15000, function(x) {
    temp <- combn(testMat[x, ], 10)
    x
}))
    user  system elapsed 
 261.163   1.093 262.608 

如果我们必须将我们的结果组合成字符矩阵,那么 base R 中我们无能为力。即使我们使用上面提到的任何一个优化库,我们仍然会循环遍历所有行并粘贴很慢的结果。

system.time(t1 <- lapply(1:50, function(x) {
    combn(testMat[x, ], 10, paste0, collapse = "")
}))
  user  system elapsed 
 6.847   0.070   6.933

## from package arrangements
system.time(t2 <- lapply(1:50, function(x) {
    apply(combinations(x = testMat[x, ], k = 10), 1, paste0, collapse = "")
}))
  user  system elapsed 
 6.318   0.032   6.353

这算不上一场胜利。我们需要一种新方法。

输入Rcpp

//[[Rcpp::export]]
CharacterVector pasteCombos(int n, int r, CharacterVector v, int numRows) {

    int r1 = r - 1, r2 = r - 2;
    int numIter, count = 0;
    CharacterVector comboVec = Rcpp::no_init_vector(numRows);

    std::vector<int> z(r);
    std::iota(z.begin(), z.end(), 0);

    while (count < numRows) {
        numIter = n - z[r1];
        if ((numIter + count) > numRows)
            numIter = numRows - count;

        for (int i = 0; i < numIter; ++i, ++count, ++z[r1])
            for (int k = 0; k < r; ++k)
                comboVec[count] += v[z[k]];

        for (int i = r2; i >= 0; i--) {
            if (z[i] != (n - r + i)) {
                ++z[i];
                for (int k = (i + 1); k < r; ++k) 
                    z[k] = z[k - 1] + 1;

                break;
            }
        }
    }

    return comboVec;
}

此函数只是生成 v 的所有组合,选择 r 并通过 += 即时粘贴结果。这会生成一个向量,而无需处理矩阵的行。让我们看看我们是否有任何改进。

numCombs <- choose(17, 10)
charMat <- matrix(as.character(testMat), nrow = 15000)

funOP <- function(z, r) {
    apply(X = combn(seq_len(ncol(z)), r), MAR = 2,FUN = function(jj) {apply(z[, jj], 1, paste, collapse="") })
}

system.time(t1 <- funOP(testMat[1:100, ], 10))
   user  system elapsed 
 22.221   0.110  22.330 

system.time(t2 <- lapply(1:100, function(x) {
     pasteCombos(17, 10, charMat[x,], numCombs)
}))
  user  system elapsed 
 7.890   0.085   7.975

快了近 3 倍...不错,但我们可以做得更好。

输入parallel

library(parallel)
system.time(t3 <- mclapply(1:100, function(x) {
    pasteCombos(17, 10, charMat[x,], numCombs)
}, mc.cores = 8)) ## you will have to adjust this on your computer.. I'm running MacOS with 8 cores
  user  system elapsed 
 1.430   0.454   1.912

现在我们正在谈论!!!快了将近 12 倍!!

这里是完整性检查:

all.equal(t1, do.call(rbind, t2))
# [1] TRUE
all.equal(t1, do.call(rbind, t3))
# [1] TRUE

总的来说,如果我们假设我们可以在 2 秒内完成 100 行,我们可以在可观的时间内完成我们的任务 2 * 150 = 300 seconds = 5 minutes