如何使用 ParquetWriter 将 TIMESTAMP 逻辑类型(INT96)写入镶木地板?

How to write TIMESTAMP logical type (INT96) to parquet, using ParquetWriter?

我有一个使用 org.apache.parquet.hadoop.ParquetWriter 将 CSV 数据文件转换为 parquet 数据文件的工具。

目前,它只处理int32doublestring

我需要支持 parquet timestamp 逻辑类型(注释为 int96),但我不知道该怎么做,因为我在网上找不到准确的规范。

看来这种时间戳编码 (int96) 很少见,而且没有得到很好的支持。我在网上发现的规格细节很少。 This github README 指出:

Timestamps saved as an int96 are made up of the nanoseconds in the day (first 8 byte) and the Julian day (last 4 bytes).

具体来说:

  1. 哪个镶木地板 Type do I use for the column in MessageType 模式?我假设我应该使用基本类型 PrimitiveTypeName.INT96,但我不确定是否可以指定逻辑类型?
  2. 如何写入数据?即我以什么格式将时间戳写入组?对于 INT96 时间戳,我假设我必须写一些二进制类型?

这是我的代码的简化版本,它演示了我正在尝试做的事情。具体来说,看一下"TODO"的注释,这是代码中与上述问题相关的两点。

List<Type> fields = new ArrayList<>();
fields.add(new PrimitiveType(Type.Repetition.OPTIONAL, PrimitiveTypeName.INT32, "int32_col", null));
fields.add(new PrimitiveType(Type.Repetition.OPTIONAL, PrimitiveTypeName.DOUBLE, "double_col", null));
fields.add(new PrimitiveType(Type.Repetition.OPTIONAL, PrimitiveTypeName.STRING, "string_col", null));

// TODO: 
//   Specify the TIMESTAMP type. 
//   How? INT96 primitive type? Is there a logical timestamp type I can use w/ MessageType schema?
fields.add(new PrimitiveType(Type.Repetition.OPTIONAL, PrimitiveTypeName.INT96, "timestamp_col", null)); 

MessageType schema = new MessageType("input", fields);

// initialize writer
Configuration configuration = new Configuration();
configuration.setQuietMode(true);
GroupWriteSupport.setSchema(schema, configuration);
ParquetWriter<Group> writer = new ParquetWriter<Group>(
  new Path("output.parquet"),
  new GroupWriteSupport(),
  CompressionCodecName.SNAPPY,
  ParquetWriter.DEFAULT_BLOCK_SIZE,
  ParquetWriter.DEFAULT_PAGE_SIZE,
  1048576,
  true,
  false,
  ParquetProperties.WriterVersion.PARQUET_1_0,
  configuration
);

// write CSV data
CSVParser parser = CSVParser.parse(new File(csv), StandardCharsets.UTF_8, CSVFormat.TDF.withQuote(null));
ArrayList<String> columns = new ArrayList<>(schemaMap.keySet());
int colIndex;
int rowNum = 0;
for (CSVRecord csvRecord : parser) {
  rowNum ++;
  Group group = f.newGroup();
  colIndex = 0;
  for (String record : csvRecord) {
    if (record == null || record.isEmpty() || record.equals( "NULL")) {
      colIndex++;
      continue;
    }


    record = record.trim();
    String type = schemaMap.get(columns.get(colIndex)).get("type").toString();
    MessageTypeConverter.addTypeValueToGroup(type, record, group, colIndex++);

    switch (colIndex) {
      case 0: // int32
        group.add(colIndex, Integer.parseInt(record));
        break;
      case 1: // double
        group.add(colIndex, Double.parseDouble(record));
        break;
      case 2: // string
        group.add(colIndex, record);
        break;
      case 3:
        // TODO: convert CSV string value to TIMESTAMP type (how?)
        throw new NotImplementedException();
    }
  }
  writer.write(group);
}
writer.close();
  1. INT96 时间戳使用 INT96 物理类型,没有任何逻辑类型,所以不要用任何注释它们。
  2. 如果您对 INT96 时间戳的结构感兴趣,请查看 here. If you would like to see sample code that converts to and from this format, take a look at this file from Hive

我想通了,使用来自 spark sql 的 this code 作为参考。

INT96 二进制编码分为两部分: 前 8 个字节是自午夜以来的纳秒 最后 4 个字节是 Julian day

String value = "2019-02-13 13:35:05";

final long NANOS_PER_HOUR = TimeUnit.HOURS.toNanos(1);
final long NANOS_PER_MINUTE = TimeUnit.MINUTES.toNanos(1);
final long NANOS_PER_SECOND = TimeUnit.SECONDS.toNanos(1);

// Parse date
SimpleDateFormat parser = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
Calendar cal = Calendar.getInstance(TimeZone.getTimeZone("UTC"));
cal.setTime(parser.parse(value));

// Calculate Julian days and nanoseconds in the day
LocalDate dt = LocalDate.of(cal.get(Calendar.YEAR), cal.get(Calendar.MONTH)+1, cal.get(Calendar.DAY_OF_MONTH));
int julianDays = (int) JulianFields.JULIAN_DAY.getFrom(dt);
long nanos = (cal.get(Calendar.HOUR_OF_DAY) * NANOS_PER_HOUR)
        + (cal.get(Calendar.MINUTE) * NANOS_PER_MINUTE)
        + (cal.get(Calendar.SECOND) * NANOS_PER_SECOND);

// Write INT96 timestamp
byte[] timestampBuffer = new byte[12];
ByteBuffer buf = ByteBuffer.wrap(timestampBuffer);
buf.order(ByteOrder.LITTLE_ENDIAN).putLong(nanos).putInt(julianDays);

// This is the properly encoded INT96 timestamp
Binary tsValue = Binary.fromReusedByteArray(timestampBuffer);