我如何为一个 pluggy hook 规范注释类型?

How can I annotate types for a pluggy hook specification?

我想将类型注释添加到我的插件挂钩规范中,以便可以对挂钩实现进行类型检查。使用 pluggy documentation:

中的这个简化示例
import pluggy  # type: ignore

hookspec = pluggy.HookspecMarker("myproject")
hookimpl = pluggy.HookimplMarker("myproject")


class MySpec(object):
    """A hook specification namespace."""

    @hookspec
    def myhook(self, arg1, arg2):
        """My special little hook that you can customize."""


class Plugin_1(object):
    """A hook implementation namespace."""

    @hookimpl
    def myhook(self, arg1, arg2):
        print("inside Plugin_1.myhook()")
        return arg1 + arg2 + "a" # intentional error


# create a manager and add the spec
pm = pluggy.PluginManager("myproject")
pm.add_hookspecs(MySpec)
# register plugins
pm.register(Plugin_1())
# call our `myhook` hook
# intentional incompatible type for parameter arg2
results = pm.hook.myhook(arg1=1, arg2="1")
print(results)

我认为正确有效的注释应该是:

def myhook(self, arg1: int, arg2: int) -> int: ...

我尝试将此注释添加到 hookspec。如我所料,这是行不通的。我相信这是因为 pluggy 实现的间接寻址是动态的。代码必须是 运行 以便 PluginManageradd_hookspecs() 方法可以定义可用的钩子。

我看到 pm.hookpluggy.hooks._HookRelay 类型,pm.hook.myhookpluggy.hooks._HookCaller 的一个实例,它有一个 __call__() 方法。

我尝试使用 stubgen 为 pluggy 制作一组 .pyi 文件,然后以两种不同的方式将注释添加到 pluggy.hooks._HookCaller

class _HookCaller:
    def __init__(self, trace: Any) -> None: ...
    def myhook(self, arg1: int, arg2: int) -> int: ...
    def __call__(self, arg1: int, arg2: int) -> int: ...

当我执行 MYPYPATH=./stubs mypy --verboes example.py 时,我可以看到 hooks.pyi 正在被解析,但未检测到参数类型不匹配。即使我从 import pluggy.

中删除 # type: ignore 注释,此行为也是一致的

问题:

  1. 是否可以将 myhook() 挂钩的类型注释定义为外部 .pyi 文件?
  2. 如果是这样,那个 .pyi 文件会包含什么?我应该把它存储在哪里,以便 mypy 在类型检查 运行 时提取它?
  3. 是否可以进行注释,使挂钩实现者和挂钩调用者都获得有用的类型提示?

第一个问题是 @hookspec 消除了 myhook 方法的类型提示:

from typing import TypeVar, Callable, Any, cast

# Improvement suggested by @oremanj on python/typing gitter
F = TypeVar("F", bound=Callable[..., Any])
hookspec = cast(Callable[[F], F], pluggy.HookspecMarker("myproject"))

该解决方法取消了对外部 .pyi 文件的要求。只需使用现有的钩子规范来定义类型提示。这解决了问题 1 和问题 2:您不需要 .pyi 文件。就用typing.cast()给mypy一个提示,它不能从静态分析中学习:

# Add cast so that mypy knows that pm.hook
# is actually a MySpec instance. Without this
# hint there really is no way for mypy to know
# this.
pm.hook = cast(MySpec, pm.hook)

这可以通过添加注释来检查:

# Uncomment these when running through mypy to see
# how mypy regards the type
reveal_type(pm.hook)
reveal_type(pm.hook.myhook)
reveal_type(MySpec.myhook)

运行 这通过 mypy:

plug.py:24: error: Unsupported operand types for + ("int" and "str")
plug.py:42: error: Revealed type is 'plug.MySpec'
plug.py:43: error: Revealed type is 'def (arg1: builtins.int, arg2: builtins.int) -> builtins.int'
plug.py:44: error: Revealed type is 'def (self: plug.MySpec, arg1: builtins.int, arg2: builtins.int) -> builtins.int'
plug.py:47: error: Argument "arg2" to "myhook" of "MySpec" has incompatible type "str"; expected "int"

现在 mypy 捕获了 hook 调用者和 hook 实现的类型问题 (Q3)!

完整代码:

import pluggy  # type: ignore
from typing import TypeVar, Callable, Any, cast

# Improvement suggested by @oremanj on python/typing gitter
F = TypeVar("F", bound=Callable[..., Any])
hookspec = cast(Callable[[F], F], pluggy.HookspecMarker("myproject"))
hookimpl = pluggy.HookimplMarker("myproject")


class MySpec(object):
    """A hook specification namespace."""

    @hookspec
    def myhook(self, arg1: int, arg2: int) -> int:
        """My special little hook that you can customize."""


class Plugin_1(object):
    """A hook implementation namespace."""

    @hookimpl
    def myhook(self, arg1: int, arg2: int) -> int:
        print("inside Plugin_1.myhook()")
        return arg1 + arg2 + 'a'


# create a manager and add the spec
pm = pluggy.PluginManager("myproject")
pm.add_hookspecs(MySpec)

# register plugins
pm.register(Plugin_1())

# Add cast so that mypy knows that pm.hook
# is actually a MySpec instance. Without this
# hint there really is no way for mypy to know
# this.
pm.hook = cast(MySpec, pm.hook)

# Uncomment these when running through mypy to see
# how mypy regards the type
# reveal_type(pm.hook)
# reveal_type(pm.hook.myhook)
# reveal_type(MySpec.myhook)

# this will now be caught by mypy
results = pm.hook.myhook(arg1=1, arg2="1")
print(results)

Brad 的回答中的很多事情都可以在 pluggy.pyi 文件中完成。我有 pluggy.pyi:

的这个(可能非常不完整)内容
from types import ModuleType
from typing import Callable, Type, TypeVar, Generic, Any


F = TypeVar("F", bound=Callable[..., Any])


class HookspecMarker:
    def __init__(self, name: str) -> None:
        ...

    def __call__(self, func: F) -> F:
        ...


class HookimplMarker:
    def __init__(self, name: str) -> None:
        ...

    def __call__(self, func: F) -> F:
        ...


Spec = TypeVar("Spec")


class PluginManager(Generic[Spec]):
    def __init__(self, name: str) -> None:
        ...

    def load_setuptools_entrypoints(self, name: str) -> None:
        ...

    def add_hookspecs(self, module: Type[Spec]) -> None:
        ...

    def register(self, module: ModuleType) -> None:
        ...

    hook: Spec

这允许我创建一个插件管理器,如下所示:

import pluggy
from typing import TYPE_CHECKING
from .hookspecs import PluginSpec
from .plugins import localplugins


if TYPE_CHECKING:
    PluginManager = pluggy.PluginManager[PluginSpec]
else:
    PluginManager = pluggy.PluginManager

plugin: PluginManager = pluggy.PluginManager("mypackage")
plugin.add_hookspecs(PluginSpec)
plugin.load_setuptools_entrypoints("mypackage")
plugin.register(localplugins)

hookspec 需要是静态的 class 方法:

from typing import Any
import pluggy


hookspec = pluggy.HookspecMarker("mypackage")


class PluginSpec:
    @staticmethod
    @hookspec
    def plugin_func(*args: Any) -> None:
        ...