Dask 客户端无法连接到 dask-scheduler
Dask Client can't connect to dask-scheduler
我使用的是 dask 1.1.1(最新版本),我已经在命令行使用以下命令启动了 dask 调度程序:
$ dask-scheduler --port 9796 --bokeh-port 9797 --bokeh-prefix my_project
distributed.scheduler - INFO - -----------------------------------------------
distributed.scheduler - INFO - Clear task state
distributed.scheduler - INFO - Scheduler at: tcp://10.1.0.107:9796
distributed.scheduler - INFO - bokeh at: :9797
distributed.scheduler - INFO - Local Directory: /tmp/scheduler-pdnwslep
distributed.scheduler - INFO - -----------------------------------------------
distributed.scheduler - INFO - Register tcp://10.1.25.4:36310
distributed.scheduler - INFO - Starting worker compute stream, tcp://10.1.25.4:36310
distributed.core - INFO - Starting established connection
然后...我尝试使用以下代码启动客户端以连接到调度程序:
from dask.distributed import Client
c = Client('10.1.0.107:9796', set_as_default=False)
但在尝试这样做时,出现错误:
...
File "/root/anaconda3/lib/python3.7/site-packages/tornado/concurrent.py", line 238, in result
raise_exc_info(self._exc_info)
File "<string>", line 4, in raise_exc_info
tornado.gen.TimeoutError: Timeout
During handling of the above exception, another exception occurred:
...
File "/root/anaconda3/lib/python3.7/site-packages/distributed/comm/core.py", line 195, in _raise
raise IOError(msg)
OSError: Timed out trying to connect to 'tcp://10.1.0.107:9796' after 10 s: connect() didn't finish in time
这已经在 运行 几个月的系统中进行了硬编码。所以我只是写这个问题来验证我在编程上没有做错任何事吗?我想一定是环境出了问题。你觉得一切都对吗?什么样的事情可以在 dask 和 python 之外阻止它?证书?包的不同版本?想法
(见有问题的评论)
dask 的包装器,主要用于烘焙我们的特定配置,并使其易于在我们的系统中使用 docker 个容器:
''' daskwrapper: easy access to distributed computing '''
import webbrowser
from dask.distributed import Client as DaskClient
from . import config
scheduler_config = { # from yaml
"scheduler_hostname": "schedulermachine.corpdomain.com"
"scheduler_ip": "10.0.0.1"}
worker_config = { # from yaml
"environments": {
"generic": {
"scheduler_port": 9796,
"dashboard_port": 9797,
"worker_port": 67176}}}
class Client():
def __init__(self, environment: str):
(
self.scheduler_hostname,
self.scheduler_port,
self.dashboard_port,
self.scheduler_address) = self.get_scheduler_details(environment)
self.client = DaskClient(self.scheduler_address, asynchronous=False)
def get_scheduler_details(self, environment: str) -> tuple:
''' gets it from a map of availble docker images... '''
envs = worker_config['environments']
return (
scheduler_config['scheduler_hostname'],
envs[environment]['scheduler_port'],
envs[environment]['dashboard_port'],
(
f"{scheduler_config['scheduler_hostname']}:"
f"{str(envs[environment]['scheduler_port'])}"))
def open_status(self):
webbrowser.open_new_tab(self.get_status())
def get_status(self):
return f'http://{self.scheduler_hostname}:{self.dashboard_port}/status'
def get_async_client(self):
''' returns a client instance so the user can use it directly '''
return DaskClient(self.scheduler_address, asynchronous=True)
def get(self, workflow: dict, tasks: 'str|list'):
return self.client.get(workflow, tasks)
async def submit(self, function: callable, args: list):
''' saved as example dask api '''
if not isinstance(args, list) and not isinstance(args, tuple):
args = [args]
async with DaskClient(self.scheduler_address, asynchronous=True) as client:
future = client.submit(function, *args)
result = await future
return result
def close(self):
return self.client.close()
那是客户端,它是这样使用的:
from daskwrapper import Client
dag = {'some_task': (some_task_function, )}
workers = Client(environment='some_environment')
workers.get(workflow=dag, tasks='some_task')
workers.close()
调度程序是这样启动的:
def start():
def start_scheduler(port, dashboard_port):
async def f():
s = Scheduler(
port=port,
dashboard_address=f"0.0.0.0:{dashboard_port}")
s = await s
await s.finished()
asyncio.get_event_loop().run_until_complete(f())
worker_config = configs.get(repo='spartan_worker')
envs = worker_config['environments']
for key, value in envs.items():
port = value['scheduler_port']
dashboard_port = str(value['dashboard_port'])
thread = Thread(
target=start_scheduler,
args=(port, dashboard_port))
thread.start()
和工人:
def start(
scheduler_address: str,
scheduler_port: int,
worker_address: str,
worker_port: int
):
async def f(scheduler_address):
w = await Worker(
scheduler_address,
port=worker_port,
contact_address=f'{worker_address}:{worker_port}')
await w.finished()
asyncio.get_event_loop().run_until_complete(f(
f'tcp://{scheduler_address}:{str(scheduler_port)}'))
这可能不会直接帮助您解决这个问题,但我相信自从我们 docker 对其进行处理后,我们就不再遇到这个问题了。这里缺少很多东西,但这是基础,可能还有更好的方法可以在分布式计算上获得专门的环境以便于使用,但这符合我们的需要。
我使用的是 dask 1.1.1(最新版本),我已经在命令行使用以下命令启动了 dask 调度程序:
$ dask-scheduler --port 9796 --bokeh-port 9797 --bokeh-prefix my_project
distributed.scheduler - INFO - -----------------------------------------------
distributed.scheduler - INFO - Clear task state
distributed.scheduler - INFO - Scheduler at: tcp://10.1.0.107:9796
distributed.scheduler - INFO - bokeh at: :9797
distributed.scheduler - INFO - Local Directory: /tmp/scheduler-pdnwslep
distributed.scheduler - INFO - -----------------------------------------------
distributed.scheduler - INFO - Register tcp://10.1.25.4:36310
distributed.scheduler - INFO - Starting worker compute stream, tcp://10.1.25.4:36310
distributed.core - INFO - Starting established connection
然后...我尝试使用以下代码启动客户端以连接到调度程序:
from dask.distributed import Client
c = Client('10.1.0.107:9796', set_as_default=False)
但在尝试这样做时,出现错误:
...
File "/root/anaconda3/lib/python3.7/site-packages/tornado/concurrent.py", line 238, in result
raise_exc_info(self._exc_info)
File "<string>", line 4, in raise_exc_info
tornado.gen.TimeoutError: Timeout
During handling of the above exception, another exception occurred:
...
File "/root/anaconda3/lib/python3.7/site-packages/distributed/comm/core.py", line 195, in _raise
raise IOError(msg)
OSError: Timed out trying to connect to 'tcp://10.1.0.107:9796' after 10 s: connect() didn't finish in time
这已经在 运行 几个月的系统中进行了硬编码。所以我只是写这个问题来验证我在编程上没有做错任何事吗?我想一定是环境出了问题。你觉得一切都对吗?什么样的事情可以在 dask 和 python 之外阻止它?证书?包的不同版本?想法
(见有问题的评论)
dask 的包装器,主要用于烘焙我们的特定配置,并使其易于在我们的系统中使用 docker 个容器:
''' daskwrapper: easy access to distributed computing '''
import webbrowser
from dask.distributed import Client as DaskClient
from . import config
scheduler_config = { # from yaml
"scheduler_hostname": "schedulermachine.corpdomain.com"
"scheduler_ip": "10.0.0.1"}
worker_config = { # from yaml
"environments": {
"generic": {
"scheduler_port": 9796,
"dashboard_port": 9797,
"worker_port": 67176}}}
class Client():
def __init__(self, environment: str):
(
self.scheduler_hostname,
self.scheduler_port,
self.dashboard_port,
self.scheduler_address) = self.get_scheduler_details(environment)
self.client = DaskClient(self.scheduler_address, asynchronous=False)
def get_scheduler_details(self, environment: str) -> tuple:
''' gets it from a map of availble docker images... '''
envs = worker_config['environments']
return (
scheduler_config['scheduler_hostname'],
envs[environment]['scheduler_port'],
envs[environment]['dashboard_port'],
(
f"{scheduler_config['scheduler_hostname']}:"
f"{str(envs[environment]['scheduler_port'])}"))
def open_status(self):
webbrowser.open_new_tab(self.get_status())
def get_status(self):
return f'http://{self.scheduler_hostname}:{self.dashboard_port}/status'
def get_async_client(self):
''' returns a client instance so the user can use it directly '''
return DaskClient(self.scheduler_address, asynchronous=True)
def get(self, workflow: dict, tasks: 'str|list'):
return self.client.get(workflow, tasks)
async def submit(self, function: callable, args: list):
''' saved as example dask api '''
if not isinstance(args, list) and not isinstance(args, tuple):
args = [args]
async with DaskClient(self.scheduler_address, asynchronous=True) as client:
future = client.submit(function, *args)
result = await future
return result
def close(self):
return self.client.close()
那是客户端,它是这样使用的:
from daskwrapper import Client
dag = {'some_task': (some_task_function, )}
workers = Client(environment='some_environment')
workers.get(workflow=dag, tasks='some_task')
workers.close()
调度程序是这样启动的:
def start():
def start_scheduler(port, dashboard_port):
async def f():
s = Scheduler(
port=port,
dashboard_address=f"0.0.0.0:{dashboard_port}")
s = await s
await s.finished()
asyncio.get_event_loop().run_until_complete(f())
worker_config = configs.get(repo='spartan_worker')
envs = worker_config['environments']
for key, value in envs.items():
port = value['scheduler_port']
dashboard_port = str(value['dashboard_port'])
thread = Thread(
target=start_scheduler,
args=(port, dashboard_port))
thread.start()
和工人:
def start(
scheduler_address: str,
scheduler_port: int,
worker_address: str,
worker_port: int
):
async def f(scheduler_address):
w = await Worker(
scheduler_address,
port=worker_port,
contact_address=f'{worker_address}:{worker_port}')
await w.finished()
asyncio.get_event_loop().run_until_complete(f(
f'tcp://{scheduler_address}:{str(scheduler_port)}'))
这可能不会直接帮助您解决这个问题,但我相信自从我们 docker 对其进行处理后,我们就不再遇到这个问题了。这里缺少很多东西,但这是基础,可能还有更好的方法可以在分布式计算上获得专门的环境以便于使用,但这符合我们的需要。