OpenCV 断言失败:(-215:断言失败) npoints >= 0 && (depth == CV_32F || depth == CV_32S)

OpenCV Assertion failed: (-215:Assertion failed) npoints >= 0 && (depth == CV_32F || depth == CV_32S)

我在 this website 上找到了以下代码:

import os
import os.path
import cv2
import glob
import imutils
CAPTCHA_IMAGE_FOLDER = "generated_captcha_images"
OUTPUT_FOLDER = "extracted_letter_images"


# Get a list of all the captcha images we need to process
captcha_image_files = glob.glob(os.path.join(CAPTCHA_IMAGE_FOLDER, "*"))
counts = {}

# loop over the image paths
for (i, captcha_image_file) in enumerate(captcha_image_files):
    print("[INFO] processing image {}/{}".format(i + 1, len(captcha_image_files)))

    # Since the filename contains the captcha text (i.e. "2A2X.png" has the text "2A2X"),
    # grab the base filename as the text
    filename = os.path.basename(captcha_image_file)
    captcha_correct_text = os.path.splitext(filename)[0]

    # Load the image and convert it to grayscale
    image = cv2.imread(captcha_image_file)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # Add some extra padding around the image
    gray = cv2.copyMakeBorder(gray, 8, 8, 8, 8, cv2.BORDER_REPLICATE)

    # threshold the image (convert it to pure black and white)
    thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]

    # find the contours (continuous blobs of pixels) the image
    contours = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # Hack for compatibility with different OpenCV versions
    contours = contours[0] if imutils.is_cv2() else contours[1]

    letter_image_regions = []

    # Now we can loop through each of the four contours and extract the letter
    # inside of each one
    for contour in contours:
        # Get the rectangle that contains the contour
        (x, y, w, h) = cv2.boundingRect(contour)

        # Compare the width and height of the contour to detect letters that
        # are conjoined into one chunk
        if w / h > 1.25:
            # This contour is too wide to be a single letter!
            # Split it in half into two letter regions!
            half_width = int(w / 2)
            letter_image_regions.append((x, y, half_width, h))
            letter_image_regions.append((x + half_width, y, half_width, h))
        else:
            # This is a normal letter by itself
            letter_image_regions.append((x, y, w, h))

    # If we found more or less than 4 letters in the captcha, our letter extraction
    # didn't work correcly. Skip the image instead of saving bad training data!
    if len(letter_image_regions) != 4:
        continue

    # Sort the detected letter images based on the x coordinate to make sure
    # we are processing them from left-to-right so we match the right image
    # with the right letter
    letter_image_regions = sorted(letter_image_regions, key=lambda x: x[0])

    # Save out each letter as a single image
    for letter_bounding_box, letter_text in zip(letter_image_regions, captcha_correct_text):
        # Grab the coordinates of the letter in the image
        x, y, w, h = letter_bounding_box

        # Extract the letter from the original image with a 2-pixel margin around the edge
        letter_image = gray[y - 2:y + h + 2, x - 2:x + w + 2]

        # Get the folder to save the image in
        save_path = os.path.join(OUTPUT_FOLDER, letter_text)

        # if the output directory does not exist, create it
        if not os.path.exists(save_path):
            os.makedirs(save_path)

        # write the letter image to a file
        count = counts.get(letter_text, 1)
        p = os.path.join(save_path, "{}.png".format(str(count).zfill(6)))
        cv2.imwrite(p, letter_image)

        # increment the count for the current key
        counts[letter_text] = count + 1

当我尝试 运行 代码时,出现以下错误:

[INFO] processing image 1/9955
Traceback (most recent call last):
  File "extract_single_letters_from_captchas.py", line 47, in <module>
    (x, y, w, h) = cv2.boundingRect(contour)
cv2.error: OpenCV(4.0.0) /Users/travis/build/skvark/opencv-python/opencv/modules/imgproc/src/shapedescr.cpp:741: error: (-215:Assertion failed) npoints >= 0 && (depth == CV_32F || depth == CV_32S) in function 'pointSetBoundingRect'

我尝试在 Whosebug 上搜索解决方案,但没有找到任何类似的解决方案。


编辑(见评论):

这是错误的做法:

contours = contours[0] if imutils.is_cv2() else contours[1]

imutils.is_cv2() 正在 returning False,尽管它应该 return True。如果不介意去掉这个依赖,改成:

contours = contours[0]

我找到原因了。您正在学习的教程可能是在 OpenCV 4 发布之前发布的。 OpenCV 3 更改了 cv2.findContours(...) to return image, contours, hierarchy, while OpenCV 2's cv2.findContours(...) and OpenCV 4's cv2.findContours(...) return contours, hierarchy。因此,在 OpenCV 4 之前,如果你使用 OpenCV 2,它应该是 contours[0] else contours[1] 是正确的。如果你还想拥有这个"compatibility",可以改成:

contours = contours[1] if imutils.is_cv3() else contours[0]

【OpenCV 3 将 cv2.findContours(...) 更改为 return image, contours, hierarchy】 这个内容对我很有帮助。我在前面添加了一个新变量并修复了所有错误..

这是因为opencv-python版本4.0.0。如果您想在不更改代码的情况下解决此问题,请将 opencv-python 降级到版本 3.4.9.31

  • 卸载opencv-python

    pip uninstall opencv-python

  • 安装opencv-python==3.4.9.31

    pip install opencv-python==3.4.9.31

如果函数 'pointSetBoundingRect' 出现问题,您需要安装 'opencv-python-headless'

pip install opencv-python-headless==3.4.9.31

在 OpenCV4 中,cv2.findContours 只有 2 个 return 值。 轮廓是第一个值

contours, _ = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

请注意,我添加下划线是为了放弃 hierarchy

的另一个 return 值

我用以下方式编写了相同的代码:

_, contours, hierarchy = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)

并且我的代码有效。我认为以前它返回 2 个变量,现在我们必须解压缩为三个变量。如果这不起作用,请尝试以下操作:

_, contours, _ = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)

这应该有效。

更多信息,您可以访问 OpenCV 文档页面:https://docs.opencv.org/3.1.0/d4/d73/tutorial_py_contours_begin.html

希望对您有所帮助。

 (x, y, w, h) = cv2.boundingRect(contour.astype(np.int))

原因在于findContours()。

在 OpenCV 版本 3 中,我们写道:

_, contours, _ = cv.findContours()

在OpenCV第4版中,我们改为:

contours, _ = cv.findContours()

使用任何一个解决问题。

或者,我们可以使用这些命令稳定我们的 OpenCV 版本,假设您已经安装了 anaconda

conda install -c conda-forge opencv=4.1.0 

pip install opencv-contrib-python