斐波那契的汇编程序
assembly program for Fibonacci
我刚收到一个关于斐波那契数列汇编程序的问题。问题如下:
斐波那契数列 F
定义为 F(1) = F(2) = 1
,对于 n ≥ 2
,
F(n + 1) = F(n) + F(n − 1)
即,(n + 1)th
值由 nth
值和 (n − 1)th
值之和给出。
- 编写一个典型的 RISC 机器的汇编程序,用于计算
kth
值 F(k)
,其中 k
是从内存位置加载的大于 2
的自然数M
,并将结果存储在内存位置M
。
我收到以下答复:
LOAD r2, M
LOAD r0, #1
LOAD r1, #1
4: SUB r2, r2, #1
ADD r3, r0, r1
LOAD r0, r1
LOAD r1, r3
BNE 4, r2, #2 // jump to instruction 4 if r2 is not equal to 2
STOR M, r1
其中#表示立即寻址,BNE代表"branch if not equal"。
我不明白为什么...谁能给我解释一下吗?
代码完全正确。这是一个评论版本,可以回答您的问题。
LOAD r2, M ; R2 -> k (as F(K) has to be computed)
LOAD r0, #1 ; F(1)=1 -> r0
LOAD r1, #1 ; F(2)=1 -> r1
; As F(1) and F(2) are already computed, we start at i=2
; During al the computation of F(i) r1==F(i-1) and r0== F(i-2)
4: SUB r2, r2, #1 ; k--
ADD r3, r0, r1 ; F(i)=F(i-2)+F(i-1)
; F(i) computed, prepare next iteration (implicitely i++)
LOAD r0, r1 ; F(i-2)=r1 (previously F(i-1))
LOAD r1, r3 ; F(i-1)=r3 (just computed F(i))
BNE 4, r2, #2 // jump to instruction 4 if r2 (k) is not equal to 2
; because we have started at i==2 we must perform
; k-2 iterations.
STOR M, r1
注意i从来没有出现过,但是想起来更简单,而不是递减的k。
我刚收到一个关于斐波那契数列汇编程序的问题。问题如下:
斐波那契数列 F
定义为 F(1) = F(2) = 1
,对于 n ≥ 2
,
F(n + 1) = F(n) + F(n − 1)
即,(n + 1)th
值由 nth
值和 (n − 1)th
值之和给出。
- 编写一个典型的 RISC 机器的汇编程序,用于计算
kth
值F(k)
,其中k
是从内存位置加载的大于2
的自然数M
,并将结果存储在内存位置M
。
我收到以下答复:
LOAD r2, M
LOAD r0, #1
LOAD r1, #1
4: SUB r2, r2, #1
ADD r3, r0, r1
LOAD r0, r1
LOAD r1, r3
BNE 4, r2, #2 // jump to instruction 4 if r2 is not equal to 2
STOR M, r1
其中#表示立即寻址,BNE代表"branch if not equal"。
我不明白为什么...谁能给我解释一下吗?
代码完全正确。这是一个评论版本,可以回答您的问题。
LOAD r2, M ; R2 -> k (as F(K) has to be computed)
LOAD r0, #1 ; F(1)=1 -> r0
LOAD r1, #1 ; F(2)=1 -> r1
; As F(1) and F(2) are already computed, we start at i=2
; During al the computation of F(i) r1==F(i-1) and r0== F(i-2)
4: SUB r2, r2, #1 ; k--
ADD r3, r0, r1 ; F(i)=F(i-2)+F(i-1)
; F(i) computed, prepare next iteration (implicitely i++)
LOAD r0, r1 ; F(i-2)=r1 (previously F(i-1))
LOAD r1, r3 ; F(i-1)=r3 (just computed F(i))
BNE 4, r2, #2 // jump to instruction 4 if r2 (k) is not equal to 2
; because we have started at i==2 we must perform
; k-2 iterations.
STOR M, r1
注意i从来没有出现过,但是想起来更简单,而不是递减的k。