树状图标签重叠
Dendrogram Label Overlapping
我有一个带有标签(第一行和第一列)的二维关系数据数组。
当我创建树状图时,我的标签重叠了。
如何使标签均匀分开?
file= open(fileName)
line = file.readline()
file.close()
populations=line.split('\t')
del populations[0]
data = np.loadtxt(fileName, delimiter="\t",skiprows=1,usecols=range(1,len(populations)+1 ))
fig, ax = plt.subplots()
Y1 = sch.linkage(data, method='ward',optimal_ordering=True)
Z1 = sch.dendrogram(Y1, orientation='top')
ind1= Z1['leaves']
arr = np.array(populations)
populations = arr[ind1]
ax.set_xticks([])
ax.set_xticks(np.arange(len(populations)))
ax.set_xticklabels(populations )
plt.xticks(rotation=90)
plt.show()
我认为在构建树状图时简单地指定标签可能更容易,因为它们在构建时是已知的,如下所示
import scipy.cluster.hierarchy as sch
import numpy as np # Only needed for random sample data
np.random.seed(1) # Seeded for reproducing
populations = np.arange(10) # Create some random sample data
data = abs(np.random.randn(10))
fig, ax = plt.subplots()
Y1 = sch.linkage(data, method='ward',optimal_ordering=True)
Z1 = sch.dendrogram(Y1, orientation='top', labels=populations)
plt.show()
会给你
我有一个带有标签(第一行和第一列)的二维关系数据数组。
当我创建树状图时,我的标签重叠了。 如何使标签均匀分开?
file= open(fileName)
line = file.readline()
file.close()
populations=line.split('\t')
del populations[0]
data = np.loadtxt(fileName, delimiter="\t",skiprows=1,usecols=range(1,len(populations)+1 ))
fig, ax = plt.subplots()
Y1 = sch.linkage(data, method='ward',optimal_ordering=True)
Z1 = sch.dendrogram(Y1, orientation='top')
ind1= Z1['leaves']
arr = np.array(populations)
populations = arr[ind1]
ax.set_xticks([])
ax.set_xticks(np.arange(len(populations)))
ax.set_xticklabels(populations )
plt.xticks(rotation=90)
plt.show()
我认为在构建树状图时简单地指定标签可能更容易,因为它们在构建时是已知的,如下所示
import scipy.cluster.hierarchy as sch
import numpy as np # Only needed for random sample data
np.random.seed(1) # Seeded for reproducing
populations = np.arange(10) # Create some random sample data
data = abs(np.random.randn(10))
fig, ax = plt.subplots()
Y1 = sch.linkage(data, method='ward',optimal_ordering=True)
Z1 = sch.dendrogram(Y1, orientation='top', labels=populations)
plt.show()
会给你