如何从 Three.js 中的 3D 点创建 3D 三次贝塞尔曲线三角形?

How can I create a 3D cubic-bezier curved triangle from 3D points in Three.js?

之后,我正在尝试生成一个 3D 弯曲三角形作为 NURBS 曲面,但我不明白如何设置我的 3D 点来做到这一点。

这是当前的实现:

var edges = this.getEdges(), // An edge is a line following 4 dots as a bezier curve.
    dots = self.getDotsFromEdges(edges), // Get all dots in order for building the surface.

    ctrlPoints = [ // Is generated only once before, but copy-pasted here for this sample code.
        [
            new THREE.Vector4(0, 0, 0, 1),
            new THREE.Vector4(0, 0, 0, 1),
            new THREE.Vector4(0, 0, 0, 1),
            new THREE.Vector4(0, 0, 0, 1)
        ],
        [
            new THREE.Vector4(0, 0, 0, 1),
            new THREE.Vector4(0, 0, 0, 1),
            new THREE.Vector4(0, 0, 0, 1),
            new THREE.Vector4(0, 0, 0, 1)
        ],
        [
            new THREE.Vector4(0, 0, 0, 1),
            new THREE.Vector4(0, 0, 0, 1),
            new THREE.Vector4(0, 0, 0, 1),
            new THREE.Vector4(0, 0, 0, 1)
        ]
    ],

    nc,
    deg1 = ctrlPoints.length - 1,
    knots1 = [],
    deg2 = 3,                           // Cubic bezier
    knots2 = [0, 0, 0, 0, 1, 1, 1, 1],  // <-
    cpts,
    nurbs ;

nc = ctrlPoints.length ;
while (nc-- > 0) knots1.push(0) ;
nc = ctrlPoints.length ;
while (nc-- > 0) knots1.push(1) ;


// The following seems to be the problem... :

cpts = ctrlPoints[0] ;
cpts[0].set(dots[0].x, dots[0].y, dots[0].z, 1) ;
cpts[1].set(dots[1].x, dots[1].y, dots[1].z, 1) ;
cpts[2].set(dots[2].x, dots[2].y, dots[2].z, 1) ;
cpts[3].set(dots[3].x, dots[3].y, dots[3].z, 1) ;

cpts = ctrlPoints[1] ;
cpts[0].set(dots[6].x, dots[6].y, dots[6].z, 1) ;
cpts[1].set(dots[5].x, dots[5].y, dots[5].z, 1) ;
cpts[2].set(dots[4].x, dots[4].y, dots[4].z, 1) ;
cpts[3].set(dots[3].x, dots[3].y, dots[3].z, 1) ;

cpts = ctrlPoints[2] ;
cpts[0].set(dots[6].x, dots[6].y, dots[6].z, 1) ;
cpts[1].set(dots[7].x, dots[7].y, dots[7].z, 1) ;
cpts[2].set(dots[8].x, dots[8].y, dots[8].z, 1) ;
cpts[3].set(dots[0].x, dots[0].y, dots[0].z, 1) ;



nurbs = new THREE.NURBSSurface(deg1, deg2, knots1, knots2, ctrlPoints) ;

this.mesh.geometry.dispose() ;
this.mesh.geometry = new THREE.ParametricBufferGeometry(function(u, v, target) {
    return nurbs.getPoint(u, v, target) ;
}, 10, 10) ;

结果如下:

我尝试了很多不同的设置,但找不到任何有效的设置。

注意:白色的点是边缘端点;红点是贝塞尔曲线的中点
注2:dots[0]指示例图片中的点0,以此类推

这是工作片段(和 fiddle 版本 here

const
  PI = Math.PI,
    sin = Math.sin,
    cos = Math.cos,
  W = 480,
    H = 400,
    log = console.log,
    DISTANCE = 100 ;

let renderer = new THREE.WebGLRenderer({
      canvas : document.querySelector('canvas'),
      antialias : true,
      alpha : true
    }),
    camera = new THREE.PerspectiveCamera(25, W/H),
    scene = new THREE.Scene(),
    center = new THREE.Vector3(0, 0, 0),

  pts = [] ;

renderer.setClearColor(0x000000, 0) ;

renderer.setSize(W, H) ;
// camera.position.set(-48, 32, 80) ;
camera.position.set(0, 0, DISTANCE) ;
camera.lookAt(center) ;

function createPoint(x, y, z, color) {
  let pt = new THREE.Mesh(
      new THREE.SphereGeometry(1, 10, 10),
      new THREE.MeshBasicMaterial({ color })
    ) ;
    pt.position.set(x, y, z) ;
    pt.x = x ;
    pt.y = y ;
    pt.z = z ;
    pts.push(pt) ;
    
    scene.add(pt) ;
}

function createEdge(pt1, pt2, pt3, pt4) {
  let curve = new THREE.CubicBezierCurve3(
          pt1.position,
          pt2.position,
          pt3.position,
          pt4.position
        ),
      mesh = new THREE.Mesh(
          new THREE.TubeGeometry(curve, 8, 0.5, 8, false),
          new THREE.MeshBasicMaterial({
            color : 0x203040
          })
        ) ;
        
    scene.add(mesh) ;
}

///////////////////////////////////////////////

// POINTS //
createPoint(-16, -8, 0, 0xcc0000) ; // RED
createPoint(-8, -12, 0, 0x999999) ;
createPoint(8, -12, 0, 0x888888) ;
createPoint(16, -8, 0, 0x00cc00) ; // GREEN
createPoint(12, -6, -8, 0x777777) ;
createPoint(8, 6, -8, 0x666666) ;
createPoint(0, 12, 0, 0x0000cc) ; // BLUE
createPoint(-8, 6, -8, 0x555555) ;
createPoint(-12, -6, -8, 0x444444) ;

// EDGES //
createEdge(pts[0], pts[1], pts[2], pts[3]) ;
createEdge(pts[3], pts[4], pts[5], pts[6]) ;
createEdge(pts[6], pts[7], pts[8], pts[0]) ;

// SURFACE //
let ctrlPoints = [
        [
            new THREE.Vector4(pts[0].x, pts[0].y, pts[0].z, 1),
            new THREE.Vector4(pts[1].x, pts[1].y, pts[1].z, 1),
            new THREE.Vector4(pts[2].x, pts[2].y, pts[2].z, 1),
            new THREE.Vector4(pts[3].x, pts[3].y, pts[3].z, 1)
        ],
        [
            new THREE.Vector4(pts[6].x, pts[6].y, pts[6].z, 1),
            new THREE.Vector4(pts[5].x, pts[5].y, pts[5].z, 1),
            new THREE.Vector4(pts[4].x, pts[4].y, pts[4].z, 1),
            new THREE.Vector4(pts[3].x, pts[3].y, pts[3].z, 1)
        ],
        [
            new THREE.Vector4(pts[6].x, pts[6].y, pts[6].z, 1),
            new THREE.Vector4(pts[7].x, pts[7].y, pts[7].z, 1),
            new THREE.Vector4(pts[8].x, pts[8].y, pts[8].z, 1),
            new THREE.Vector4(pts[0].x, pts[0].y, pts[0].z, 1)
        ]
    ],

    nc,
    deg1 = ctrlPoints.length - 1,
    knots1 = [],
    deg2 = 3,                           // Cubic bezier
    knots2 = [0, 0, 0, 0, 1, 1, 1, 1],  // <-
    cpts,
    nurbs ;

nc = ctrlPoints.length ;
while (nc-- > 0) knots1.push(0) ;
nc = ctrlPoints.length ;
while (nc-- > 0) knots1.push(1) ;

nurbs = new THREE.NURBSSurface(deg1, deg2, knots1, knots2, ctrlPoints) ;

let surfaceMesh = new THREE.Mesh(
    new THREE.ParametricBufferGeometry(function(u, v, target) {
        return nurbs.getPoint(u, v, target) ;
    }, 10, 10),
    new THREE.MeshBasicMaterial({
        side : THREE.DoubleSide,
        opacity : 0.9,
        transparent : true,
        color : 0x405060
    })
) ;

scene.add(surfaceMesh) ;



///////////////////////////////////////////////

let azimut = 0,
   pitch = 90,
    isDown = false,
    prevEv ;

function down(de) {
  prevEv = de ;
    isDown = true ;
}

function move(me) {
  if (!isDown) return ;
    
  azimut -= (me.clientX - prevEv.clientX) * 0.5 ;
    azimut %= 360 ;
    if (azimut < 0) azimut = 360 - azimut ;
    
  pitch -= (me.clientY - prevEv.clientY) * 0.5 ;
    if (pitch < 1) pitch = 1 ;
    if (pitch > 180) pitch = 180 ;
    
    prevEv = me ;
    
    let theta = pitch / 180 * PI,
        phi = azimut / 180 * PI,
        radius = DISTANCE ;
    
    camera.position.set(
       radius * sin(theta) * sin(phi),
       radius * cos(theta),
       radius * sin(theta) * cos(phi),
    ) ;
   camera.lookAt(center) ;
    
    renderer.render(scene, camera) ;
}

function up(ue) {
  isDown = false ;
}

renderer.domElement.onmousedown = down ;
window.onmousemove = move ;
window.onmouseup = up ;

renderer.render(scene, camera) ;
body {
  display: flex;
  flex-direction: row;
  justify-content: center;
  align-items: center;
  height: 100vh;
  margin: 0;
  background: #1c2228;
  overflow: hidden;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/101/three.min.js"></script>
<script src="https://threejs.org/examples/js/curves/NURBSUtils.js"></script>
<script src="https://threejs.org/examples/js/curves/NURBSCurve.js"></script>
<script src="https://threejs.org/examples/js/curves/NURBSSurface.js"></script>

<canvas></canvas>

在您的代码中,您使用了 NURBSSurface.js file, that function uses NURBSUtils.calcSurfacePoint function from NURBSUtils.js file. But the calcSurfacePoint calculate point for standard NUBRB surface where where parameter are from rectangle (u,v) wiki 中的 NURBSSurface 函数。

您不会以这种方式生成“3D 立方贝塞尔三角形”- 为此,您需要编写自己的代码,该代码将使用 bezier-triangle formulas (where the input parameters are triangle points in Barycentric_coordinate_system).

这是绘制贝塞尔三角形的方法(下面的片段)- 算法在 Geometry class 中。您在 constructor 中设置的三角形一侧的三角形数。在代码中,我在 algorithm/calculations (Geometry class) 和绘图代码 (Draw class).

之间进行了硬分离

对于贝塞尔三角形,我们需要使用 10 个控制点(9 个用于边缘,1 个用于 "plane"),如下图所示 (src here):

在此代码中,我们不使用法线,b 点名称更改为 p(例如 b003p003)。我们使用以下公式(对于立方贝塞尔三角形 n=3

其中p_ijk是控制点(n=3上面的和有10个元素所以我们有10个控制点),其中B^n_ijk(r,s,t) 是为 i,j,k>=0 和 i+j+k=n

定义的伯恩斯坦多项式

或其他情况下为 0。重心坐标中 r,s,t 的域(其中 r,s,t 是来自 [0, 1] 和 r+s+t=1 的实数)并且其中 r= (r=1, s=t=0), s=(s=1, r=t=0), t=(t =1, r=s=0) 看起来如下(黑点 - 我们将每个三角形边划分为 5 个部分 - 但我们可以将其更改为任意数量)

我们在方法 barycentricCoords(n) 中计算黑域点的规则位置,并在 Geometry class 中定义在方法 genTrianglesIndexes(n) 中哪个点创建哪些三角形。但是,您可以将此点的位置和密度更改为任何(内部三角形)以获得不同的表面三角形划分。下面是显示二维域的片段

let pp= ((s='.myCanvas',c=document.querySelector(s),ctx=c.getContext('2d'),id=ctx.createImageData(1,1)) => (x,y,r=0,g=0,b=0,a=255)=>(id.data.set([r,g,b,a]),ctx.putImageData(id, x, y),c))()


cr=[255,0,0,255];
cg=[0,255,0,255];
cb=[0,0,255,255];

w=400;
h=400;

const p1=[0,h-1];
const p2=[w-1,h-1];
const p3=[w/2,0];

mainTriangle=[p1,p2,p3];
//mainTriangle.map(p => pp(...p,...cr));

let n=5;
let points=[];

function calcPoint(p1,p2,p3,r,s,t) {
  const px=p1[0]*r + p2[0]*s + p3[0]*t;
  const py=p1[1]*r + p2[1]*s + p3[1]*t;
  return [px,py];
}

// barycentric coordinates r,s,t of point in triangle
// the points given from triangle bottom to top line by line
// first line has n+1 pojnts, second has n, third n-1
// coordinates has property r+s+t=1
function barycentricCoords(n) {
  let rst=[];
  for(let i=0; i<=n; i++) for(let j=0; j<=n-i; j++) {
    s=(j/n);
    t=(i/n);    
    r=1-s-t;
    rst.push([r,s,t]);    
  }
  return rst;
}

// Procedure calc indexes for each triangle from 
// points list (in format returned by barycentricCoords(n) )
function genTrianglesIndexes(n) {
  let st=0; 
  let m=n;  
  let triangles=[];

  for(let j=n; j>0; j--) {    
    for(let i=0; i<m; i++) {    
      triangles.push([st+i, st+i+1, st+m+i+1]);
      if(i<m-1) triangles.push([st+i+1, st+m+i+2, st+m+i+1 ]);
    }
    m--;
    st+=j+1;  
  }
  
  return triangles;
}

function drawLine(p1,p2,c) {
  let n=Math.max(Math.abs(p1[0]-p2[0]),Math.abs(p1[1]-p2[1]))/2;
 for(let i=0; i<=n; i++) {
   let s=i/n;
    let x=p1[0]*s + p2[0]*(1-s);
    let y=p1[1]*s + p2[1]*(1-s);
    pp(x,y,...c);
  }
}

function drawTriangle(p1,p2,p3,c) {
 drawLine(p1,p2,c);
  drawLine(p2,p3,c);
  drawLine(p3,p1,c);
}

// Bernstein Polynomial, i+j+k=n
function bp(n,i,j,k, r,s,t) {
  const f=x=>x?f(x-1)*x:1 // number fractional f(4)=1*2*3*4=24
  
  return r**i * s**j * t**k * f(n) / (f(i)*f(j)*f(k));  
}

//drawTriangle(...mainTriangle,cr); // draw main triangle

let bar=barycentricCoords(n);  // each domain point barycentric coordinates

let ti=genTrianglesIndexes(n); // indexes in bar for each triangle

// triangles calculated to cartesian coordinate system
let triangles = ti.map(tr=> tr.map(x=>calcPoint(...mainTriangle,...bar[x]) ) ); 

triangles.map(t => drawTriangle(...t, cg));

// domain points calculated to cartesian coordinate system (for draw)
let dp = bar.map(x=> calcPoint(...mainTriangle,...x) );

// draw black dots (4 pixels for each dot)
dp.map(x=> pp(x[0],x[1]) )
dp.map(x=> pp(x[0],x[1]-1) )
dp.map(x=> pp(x[0]-1,x[1]) )
dp.map(x=> pp(x[0]-1,x[1]-1) )
<canvas class="myCanvas" width=400 height=400 style="background: white"></canvas>

下面是带有 3D 贝塞尔立方三角形的最终片段(算法从 Geometry class 中的方法 genTrianglesForCubicBezierTriangle(n, controlPoints) 开始)- (注意:这很奇怪,但是在第一个 运行 之后的 SO 片段中,您将看不到线条,您需要重新加载页面并再次 运行 才能看到三角形线)

///////////////////////////////////////////////////////
// THIS PART/CLASS IS FOR ALGORITHMS AND CALCULATIONS
///////////////////////////////////////////////////////
class Geometry {

  constructor() { this.init(); } 

  init(n) {
    this.pts = [
      { x:-16, y: -8, z:0,  color:0xcc0000 }, // p003 RED
      { x:8,   y:-12, z:0,  color:0x888888 }, // p201
      { x:-8,  y:-12, z:0,  color:0x999999 }, // p102    
      { x:16,  y:-8,  z:0,  color:0x00cc00 }, // p300 GREEN
      { x:12,  y:-6,  z:-8, color:0x777777 }, // p210
      { x:8,   y:6,   z:-8, color:0x666666 }, // p120
      { x:0,   y:12,  z:0,  color:0x0000cc }, // p030 BLUE
      { x:-8,  y:6,   z:-8, color:0x555555 }, // p021
      { x:-12, y:-6,  z:-8, color:0x444444 }, // p012
      { x:0,   y:0,   z:8,  color:0xffff00 }, // p111 YELLOW (plane control point)
    ];
    
    this.mainTriangle = [this.pts[0],this.pts[3],this.pts[6]];
    
    this.bezierCurvesPoints = [
     [ this.pts[0], this.pts[2], this.pts[1], this.pts[3] ],
        [ this.pts[3], this.pts[4], this.pts[5], this.pts[6] ],
        [ this.pts[6], this.pts[7], this.pts[8], this.pts[0] ]
    ];
    
    //this.triangles = [
    // { points: [this.pts[0], this.pts[1], this.pts[2]], color: null }, // wireframe
    // { points: [this.pts[1], this.pts[2], this.pts[3]], color: 0xffff00 } // yellow
    //]
    
    this.triangles = this.genTrianglesForCubicBezierTriangle(25, this.pts);
  }
  
  // n = number of triangles per triangle side
  genTrianglesForCubicBezierTriangle(n, controlPoints) {
    let bar= this.barycentricCoords(n);     // domain in barycentric coordinats   
    let ti = this.genTrianglesIndexes(n);   // indexes of triangles (in bar array)
        
    let val= bar.map(x => this.calcCubicBezierTriangleValue(controlPoints,...x));  // Calc Bezier triangle vertex for each domain (bar) point    
    let tv= ti.map(tr=> tr.map(x=>val[x]) );         // generate triangles using their indexes (ti) and val    
    return tv.map(t=> ({ points: t, color: null}) ); // map triangles to proper format (color=null gives wireframe)
    
    
    // Generate domain triangles
    //let td= ti.map(tr=> tr.map(x=>this.calcPointFromBar(...this.mainTriangle,...bar[x]) ) );     
    //this.trianglesDomain = td.map(t=> ({ points: t, color: null}) );
  }
  
  // more: https://www.mdpi.com/2073-8994/8/3/13/pdf
  // Bézier Triangles with G2 Continuity across Boundaries
  // Chang-Ki Lee, Hae-Do Hwang and Seung-Hyun Yoon
  calcCubicBezierTriangleValue(controlPoints, r,s,t ) {
    let p = controlPoints, b=[];  
    b[0]= this.bp(0,0,3,r,s,t); // p[0]=p003
    b[1]= this.bp(2,0,1,r,s,t); // p[1]=p201 
    b[2]= this.bp(1,0,2,r,s,t); // p[2]=p102
    b[3]= this.bp(3,0,0,r,s,t); // p[3]=p300
    b[4]= this.bp(2,1,0,r,s,t); // p[4]=p210
    b[5]= this.bp(1,2,0,r,s,t); // p[5]=p120
    b[6]= this.bp(0,3,0,r,s,t); // p[6]=p030
    b[7]= this.bp(0,2,1,r,s,t); // p[7]=p021
    b[8]= this.bp(0,1,2,r,s,t); // p[8]=p012
    b[9]= this.bp(1,1,1,r,s,t); // p[9]=p111
    
    let x=0, y=0, z=0;
    for(let i=0; i<=9; i++) {
      x+=p[i].x*b[i];
      y+=p[i].y*b[i];
      z+=p[i].z*b[i];
    }
    return { x:x, y:y, z:z };
  }
  
  // Bernstein Polynomial degree n, i+j+k=n
  bp(i,j,k, r,s,t, n=3) {
    const f=x=>x?f(x-1)*x:1 // number fractional f(4)=1*2*3*4=24    
    return r**i * s**j * t**k * f(n) / (f(i)*f(j)*f(k));  
  }
  
  coordArrToObj(p) { return { x:p[0], y:p[1], z:p[2] } } 
  
  // Calc cartesian point from barycentric coords system
  calcPointFromBar(p1,p2,p3,r,s,t) {  
    const px=p1.x*r + p2.x*s + p3.x*t;
    const py=p1.y*r + p2.y*s + p3.y*t;
    const pz=p1.z*r + p2.z*s + p3.z*t;       
    return { x:px, y:py,  z:pz};
  }

  // barycentric coordinates r,s,t of point in triangle
  // the points given from triangle bottom to top line by line
  // first line has n+1 pojnts, second has n, third n-1
  // coordinates has property r+s+t=1
  barycentricCoords(n) {
    let rst=[];
    for(let i=0; i<=n; i++) for(let j=0; j<=n-i; j++) {
      let s=(j/n);
      let t=(i/n);    
      let r=1-s-t;
      rst.push([r,s,t]);    
    }
    return rst;
  }

  // Procedure calc indexes for each triangle from 
  // points list (in format returned by barycentricCoords(n) )
  genTrianglesIndexes(n) {
    let st=0; 
    let m=n;  
    let triangles=[];

    for(let j=n; j>0; j--) {    
      for(let i=0; i<m; i++) {    
        triangles.push([st+i, st+i+1, st+m+i+1]);
        if(i<m-1) triangles.push([st+i+1, st+m+i+2, st+m+i+1 ]);
      }
      m--;
      st+=j+1;  
    }

    return triangles;
  }
  
  // This procedures are interface for Draw class 
  getPoints() { return this.pts }
  getTriangles() { return this.triangles }
  getBezierCurves() { return this.bezierCurvesPoints; }
}


///////////////////////////////////////////////
// THIS PART IS FOR DRAWING
///////////////////////////////////////////////

// init tree js and draw geometry objects
class Draw {

  constructor(geometry) { this.init(geometry); }
  
  initGeom() {
   this.geometry.getPoints().forEach(p=> this.createPoint(p));
    this.geometry.getTriangles().forEach(t=> this.createTriangle(t));
    
    this.geometry.getBezierCurves().forEach(c=> this.createEdge(...c));
  }

  init(geometry) {
    this.geometry = geometry;
    this.W = 480,
    this.H = 400,
    this.DISTANCE = 100 ;
    this.PI = Math.PI,
    
  
    this.renderer = new THREE.WebGLRenderer({
      canvas : document.querySelector('canvas'),
      antialias : true,
      alpha : true
    }),
    this.camera = new THREE.PerspectiveCamera(25, this.W/this.H),
    this.scene = new THREE.Scene(),
    this.center = new THREE.Vector3(0, 0, 0),

  this.pts = [] ;
    
    this.renderer.setClearColor(0x000000, 0) ;

    this.renderer.setSize(this.W, this.H) ;
    // camera.position.set(-48, 32, 80) ;
    this.camera.position.set(0, 0, this.DISTANCE) ;
    this.camera.lookAt(this.center) ;
    
    this.initGeom();
    
    this.azimut = 0;
    this.pitch = 90;
    this.isDown = false;
    this.prevEv = null;

    

    this.renderer.domElement.onmousedown = e => this.down(e) ;
    window.onmousemove = e => this.move(e) ;
    window.onmouseup = e => this.up(e) ;

    this.renderer.render(this.scene, this.camera) ;
    
  }
    
  createPoint(p) {
    let {x, y, z, color} = p;
  let pt = new THREE.Mesh(
      new THREE.SphereGeometry(1, 10, 10),
      new THREE.MeshBasicMaterial({ color })
    ) ;
    pt.position.set(x, y, z) ;
    pt.x = x ;
    pt.y = y ;
    pt.z = z ;
    this.pts.push(pt) ;
    
    this.scene.add(pt) ;
 }
  
  createTriangle(t) {    
    var geom = new THREE.Geometry();
    var v1 = new THREE.Vector3(t.points[0].x, t.points[0].y, t.points[0].z);
    var v2 = new THREE.Vector3(t.points[1].x, t.points[1].y, t.points[1].z);
    var v3 = new THREE.Vector3(t.points[2].x, t.points[2].y, t.points[2].z);

    geom.vertices.push(v1);
    geom.vertices.push(v2);
    geom.vertices.push(v3);
        
    let material = new THREE.MeshNormalMaterial({wireframe: true,}) 
    if(t.color != null) material = new THREE.MeshBasicMaterial( { 
     color: t.color,
      side: THREE.DoubleSide,
      } );
    

    geom.faces.push( new THREE.Face3( 0, 1, 2 ) );
    geom.computeFaceNormals();

    var mesh= new THREE.Mesh( geom, material);
    this.scene.add(mesh) ;
  }
  
  createEdge(pt1, pt2, pt3, pt4) {
 
  let curve = new THREE.CubicBezierCurve3(
          new THREE.Vector3(pt1.x, pt1.y, pt1.z),
          new THREE.Vector3(pt2.x, pt2.y, pt2.z),
          new THREE.Vector3(pt3.x, pt3.y, pt3.z),
          new THREE.Vector3(pt4.x, pt4.y, pt4.z),
        ),
      mesh = new THREE.Mesh(
          new THREE.TubeGeometry(curve, 8, 0.5, 8, false),
          new THREE.MeshBasicMaterial({
            color : 0x203040
          })
        ) ;
        
    this.scene.add(mesh) ;
}
  
  down(de) {
        this.prevEv = de ;
        this.isDown = true ;
    }

  move(me) {
    if (!this.isDown) return ;

    this.azimut -= (me.clientX - this.prevEv.clientX) * 0.5 ;
    this.azimut %= 360 ;
    if (this.azimut < 0) this.azimut = 360 - this.azimut ;

    this.pitch -= (me.clientY - this.prevEv.clientY) * 0.5 ;
    if (this.pitch < 1) this.pitch = 1 ;
    if (this.pitch > 180) this.pitch = 180 ;

    this.prevEv = me ;

    let theta = this.pitch / 180 * this.PI,
        phi = this.azimut / 180 * this.PI,
        radius = this.DISTANCE ;

    this.camera.position.set(
      radius * Math.sin(theta) * Math.sin(phi),
      radius * Math.cos(theta),
      radius * Math.sin(theta) * Math.cos(phi),
    ) ;
    this.camera.lookAt(this.center) ;

    this.renderer.render(this.scene, this.camera) ;
  }

  up(ue) {
    this.isDown = false ;
  }
}

// SYSTEM SET UP
let geom= new Geometry();
let draw = new Draw(geom);
body {
  display: flex;
  flex-direction: row;
  justify-content: center;
  align-items: center;
  height: 100vh;
  margin: 0;
  background: #1c2228;
  overflow: hidden;
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/101/three.min.js"></script>

<canvas></canvas>

Fiddle 版本是 here 。我把信息放在评论中,但算法很复杂,如果你有问题 - 以评论的形式提问 - 我会回答。

我修改了Kamil Kiełczewski的代码,分成2个类:

  1. BarycentricBufferGeometry 基于 ParametricBufferGeometry
  2. BezierTriangle 基于 NURBSSurface

现在它的功能类似于NURBSSurface.js,而且效率更高。

BarycentricBufferGeometry.js

import { BufferGeometry, Float32BufferAttribute, Vector3 } from './three.module.js';

class BarycentricBufferGeometry extends BufferGeometry {

    constructor(func, slices) {

        super();

        this.type = 'BezierTriangleGeometry';

        this.parameters = {
            func: func,
            slices: slices
        };

        // buffers
        const indices = [];
        const vertices = [];
        const normals = [];
        const uvs = [];

        const EPS = 0.00001;

        const normal = new Vector3();

        const p0 = new Vector3(), p1 = new Vector3();
        const pu = new Vector3(), pv = new Vector3();

        if (func.length < 3) {

            console.error('THREE.ParametricGeometry: Function must now modify a Vector3 as third parameter.');

        }

        // generate vertices, normals and uvs
        for (let i = 0; i <= slices; i++) {

            for (let j = 0; j <= slices - i; j++) {

                const u = j / slices;
                const v = i / slices;

                // vertex
                func(u, v, p0);
                vertices.push(p0.x, p0.y, p0.z);

                // normal
                // approximate tangent vectors via finite differences
                if (u - EPS >= 0) {

                    func(u - EPS, v, p1);
                    pu.subVectors(p0, p1);

                } else {

                    func(u + EPS, v, p1);
                    pu.subVectors(p1, p0);

                }

                if (v - EPS >= 0) {

                    func(u, v - EPS, p1);
                    pv.subVectors(p0, p1);

                } else {

                    func(u, v + EPS, p1);
                    pv.subVectors(p1, p0);

                }

                // cross product of tangent vectors returns surface normal
                normal.crossVectors(pu, pv).normalize();
                normals.push(normal.x, normal.y, normal.z);

                // uv
                uvs.push(u, v);

            }

        }

        // generate indices
        let st = 0;
        let m = slices;

        for (let j = slices; j > 0; j--) {

            for (let i = 0; i < m; i++) {

                const a = st + i;
                const b = st + i + 1;
                const c = st + i + 1 + m;

                indices.push(a, b, c);

                if (i < m - 1)
                    indices.push(st + i + 1, st + m + i + 2, st + m + i + 1);
            }

            m = m - 1;
            st += j + 1;
        }

        // build geometry
        this.setIndex(indices);
        this.setAttribute('position', new Float32BufferAttribute(vertices, 3));
        this.setAttribute('normal', new Float32BufferAttribute(normals, 3));
        this.setAttribute('uv', new Float32BufferAttribute(uvs, 2));

    }
}

// BarycentricBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
;


export { BarycentricBufferGeometry };

BezierTriangle.js

class BezierTriangle {

    constructor(controlPoints) {

        this.controlPoints = controlPoints;
    }

    static bp(i, j, k, r, s, t, n = 3) {
        const f = x => x ? f(x - 1) * x : 1;
        return r ** i * s ** j * t ** k * f(n) / (f(i) * f(j) * f(k));
    }

    static calcSurfacePoint(p, u, v, target) {

        const t = 1 - u - v;
        let b = [];

        b[0] = BezierTriangle.bp(0, 0, 3, u, v, t);
        b[1] = BezierTriangle.bp(1, 0, 2, u, v, t);
        b[2] = BezierTriangle.bp(2, 0, 1, u, v, t);
        b[3] = BezierTriangle.bp(3, 0, 0, u, v, t);
        b[4] = BezierTriangle.bp(2, 1, 0, u, v, t);
        b[5] = BezierTriangle.bp(1, 2, 0, u, v, t);
        b[6] = BezierTriangle.bp(0, 3, 0, u, v, t);
        b[7] = BezierTriangle.bp(0, 2, 1, u, v, t);
        b[8] = BezierTriangle.bp(0, 1, 2, u, v, t);
        b[9] = BezierTriangle.bp(1, 1, 1, u, v, t);

        let x = 0,
            y = 0,
            z = 0;

        for (let i = 0; i < 10; i++) {
            x += p[i].x * b[i];
            y += p[i].y * b[i];
            z += p[i].z * b[i];
        }

        target.set(x, y, z);
    }

    getPoint(u, v, target) {

        BezierTriangle.calcSurfacePoint(this.controlPoints, u, v, target);
    }
}


export { BezierTriangle };

示例:

import * as THREE from './three.module.js';

import { BarycentricBufferGeometry } from './BarycentricBufferGeometry.js';
import { BezierTriangle } from './BezierTriangle.js';


//setup
const scene = new THREE.Scene();
const camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, .01, 10000);
camera.position.set(2, 2, 6)

const renderer = new THREE.WebGLRenderer();
renderer.setSize(window.innerWidth, window.innerHeight);
document.body.appendChild(renderer.domElement);


// bezier triangle points
const points = [
    { x: 0, y: 0, z: 0, c: 'red' },

    { x: 0, y: 1, z: 0, c: 'grey' },
    { x: 0, y: 2, z: 0, c: 'grey' },
    { x: 0, y: 3, z: 1, c: 'green' },

    { x: 1, y: 3, z: 1, c: 'grey' },
    { x: 2, y: 3, z: 1, c: 'grey' },
    { x: 3, y: 3, z: 2, c: 'blue' },

    { x: 2, y: 2, z: 0, c: 'grey' },
    { x: 1, y: 1, z: 0, c: 'grey' },

    { x: 1, y: 2, z: 0, c: 'yellow' },
];

// add some colored spheres to help identify points
points.forEach(p => {
    const sphere = new THREE.Mesh(
        new THREE.SphereBufferGeometry(.1, 32, 32),
        new THREE.MeshBasicMaterial({ color: p.c ? p.c : 'white' })
    );
    sphere.position.set(p.x, p.y, p.z);
    scene.add(sphere);
});

// draw bezier triangle
const triangle = new BezierTriangle(points);

function getSurfacePoint(u, v, target) {
    return triangle.getPoint(u, v, target);
}

const geometry = new BarycentricBufferGeometry(getSurfacePoint, 3);
const material = new THREE.MeshBasicMaterial({ color: 'gold', wireframe: true });
const mesh = new THREE.Mesh(geometry, material);

scene.add(mesh);

renderer.render(scene, camera);