无法更新 VADER 词典
Cannot update VADER lexicon
print(news['title'][5])
秘鲁-厄瓜多尔边境地区发生 7.5 级地震 - 印度教
print(analyser.polarity_scores(news['title'][5]))
{'neg':0.0,'neu':1.0,'pos':0.0,'compound':0.0}
from nltk.tokenize import word_tokenize, RegexpTokenizer
import pandas as pd
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
sentence = news['title'][5]
tokenized_sentence = nltk.word_tokenize(sentence)
pos_word_list=[]
neu_word_list=[]
neg_word_list=[]
for word in tokenized_sentence:
if (analyzer.polarity_scores(word)['compound']) >= 0.1:
pos_word_list.append(word)
elif (analyzer.polarity_scores(word)['compound']) <= -0.1:
neg_word_list.append(word)
else:
neu_word_list.append(word)
print('Positive:',pos_word_list)
print('Neutral:',neu_word_list)
print('Negative:',neg_word_list)
score = analyzer.polarity_scores(sentence)
print('\nScores:', score)
正面:[]
中性:['Magnitude'、'7.5'、'quake'、'hits'、'Peru-Ecuador'、'border'、'region'、'-'、'The', 'Hindu']
否定:[]
分数:{'neg':0.0,'neu':1.0,'pos':0.0,'compound':0.0}
new_words = {
'Peru-Ecuador': -2.0,
'quake': -3.4,
}
analyser.lexicon.update(new_words)
print(analyzer.polarity_scores(sentence))
{'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound': 0.0}
from nltk.tokenize import word_tokenize, RegexpTokenizer
import pandas as pd
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
sentence = news['title'][5]
tokenized_sentence = nltk.word_tokenize(sentence)
pos_word_list=[]
neu_word_list=[]
neg_word_list=[]
for word in tokenized_sentence:
if (analyzer.polarity_scores(word)['compound']) >= 0.1:
pos_word_list.append(word)
elif (analyzer.polarity_scores(word)['compound']) <= -0.1:
neg_word_list.append(word)
else:
neu_word_list.append(word)
print('Positive:',pos_word_list)
print('Neutral:',neu_word_list)
print('Negative:',neg_word_list)
score = analyzer.polarity_scores(sentence)
print('\nScores:', score)
正面:[]
中性:['Magnitude'、'7.5'、'quake'、'hits'、'Peru-Ecuador'、'border'、'region'、'-'、'The', 'Hindu']
否定:[]
分数:{'neg':0.0,'neu':1.0,'pos':0.0,'compound':0.0}
您使用的代码绝对没问题。在更新字典时,您使用 analyser
而不是 analyzer
(不知道为什么没有收到错误)。
new_words = {
'Peru-Ecuador': -2.0,
'quake': -3.4,
}
analyzer.lexicon.update(new_words)
print(analyzer.polarity_scores(sentence))
输出:
{'neg': 0.355, 'neu': 0.645, 'pos': 0.0, 'compound': -0.6597}
再提醒一下(不知道你是不是犯了这个错误。)
您不应该再次导入该库。因为你更新的话会没了。
步骤应该是:
- 导入库和字典
- 更新字典(此步骤后您不应该再次导入库)
- 计算情绪分数
print(news['title'][5])
秘鲁-厄瓜多尔边境地区发生 7.5 级地震 - 印度教
print(analyser.polarity_scores(news['title'][5]))
{'neg':0.0,'neu':1.0,'pos':0.0,'compound':0.0}
from nltk.tokenize import word_tokenize, RegexpTokenizer
import pandas as pd
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
sentence = news['title'][5]
tokenized_sentence = nltk.word_tokenize(sentence)
pos_word_list=[]
neu_word_list=[]
neg_word_list=[]
for word in tokenized_sentence:
if (analyzer.polarity_scores(word)['compound']) >= 0.1:
pos_word_list.append(word)
elif (analyzer.polarity_scores(word)['compound']) <= -0.1:
neg_word_list.append(word)
else:
neu_word_list.append(word)
print('Positive:',pos_word_list)
print('Neutral:',neu_word_list)
print('Negative:',neg_word_list)
score = analyzer.polarity_scores(sentence)
print('\nScores:', score)
正面:[] 中性:['Magnitude'、'7.5'、'quake'、'hits'、'Peru-Ecuador'、'border'、'region'、'-'、'The', 'Hindu'] 否定:[]
分数:{'neg':0.0,'neu':1.0,'pos':0.0,'compound':0.0}
new_words = {
'Peru-Ecuador': -2.0,
'quake': -3.4,
}
analyser.lexicon.update(new_words)
print(analyzer.polarity_scores(sentence))
{'neg': 0.0, 'neu': 1.0, 'pos': 0.0, 'compound': 0.0}
from nltk.tokenize import word_tokenize, RegexpTokenizer
import pandas as pd
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
sentence = news['title'][5]
tokenized_sentence = nltk.word_tokenize(sentence)
pos_word_list=[]
neu_word_list=[]
neg_word_list=[]
for word in tokenized_sentence:
if (analyzer.polarity_scores(word)['compound']) >= 0.1:
pos_word_list.append(word)
elif (analyzer.polarity_scores(word)['compound']) <= -0.1:
neg_word_list.append(word)
else:
neu_word_list.append(word)
print('Positive:',pos_word_list)
print('Neutral:',neu_word_list)
print('Negative:',neg_word_list)
score = analyzer.polarity_scores(sentence)
print('\nScores:', score)
正面:[] 中性:['Magnitude'、'7.5'、'quake'、'hits'、'Peru-Ecuador'、'border'、'region'、'-'、'The', 'Hindu'] 否定:[]
分数:{'neg':0.0,'neu':1.0,'pos':0.0,'compound':0.0}
您使用的代码绝对没问题。在更新字典时,您使用 analyser
而不是 analyzer
(不知道为什么没有收到错误)。
new_words = {
'Peru-Ecuador': -2.0,
'quake': -3.4,
}
analyzer.lexicon.update(new_words)
print(analyzer.polarity_scores(sentence))
输出:
{'neg': 0.355, 'neu': 0.645, 'pos': 0.0, 'compound': -0.6597}
再提醒一下(不知道你是不是犯了这个错误。) 您不应该再次导入该库。因为你更新的话会没了。 步骤应该是:
- 导入库和字典
- 更新字典(此步骤后您不应该再次导入库)
- 计算情绪分数