EarthSatellite下方的Skyfield可见区域
Skyfield visible area underneath EarthSatellite
如何计算 EarthSatellite 下方的面积,以便绘制卫星经过时覆盖的大片土地?
Skyfield 中有什么可以促进这一点的吗?
编辑:只是想澄清卫星下方区域的意思。鉴于地球是一个椭球体,我需要绘制卫星下方可能观察到的最大区域。我知道如何绘制卫星路径,但现在我需要绘制一些线来表示卫星飞越地球时可见的区域。
您的编辑清楚地表明了您想要什么。可以很容易地计算卫星的可见区域(当地球被视为球体时)。 here 是获取可见部分背景知识的良好来源。当地球被视为扁球体时,要计算可见面积将困难得多(甚至可能是不可能的)。我认为最好将问题的那部分改革并post它放在数学上。
如果要计算地球被看成球体时的可见面积,我们需要在Skyfield
中做一些调整。使用 TLE api 加载卫星后,您可以轻松获得具有地球位置的子点。图书馆将此称为 Geocentric
位置,但实际上它是 Geodetic
位置(地球被视为扁球体)。要纠正这个问题,我们需要调整 Geocentric
class 的 subpoint
以使用 Geocentric
位置而不是 Geodetic
位置的计算。由于 reverse_terra
函数中的错误和信息缺失,我们还需要替换该函数。我们需要能够检索地球半径。结果如下:
from skyfield import api
from skyfield.positionlib import ICRF, Geocentric
from skyfield.constants import (AU_M, ERAD, DEG2RAD,
IERS_2010_INVERSE_EARTH_FLATTENING, tau)
from skyfield.units import Angle
from numpy import einsum, sqrt, arctan2, pi, cos, sin
def reverse_terra(xyz_au, gast, iterations=3):
"""Convert a geocentric (x,y,z) at time `t` to latitude and longitude.
Returns a tuple of latitude, longitude, and elevation whose units
are radians and meters. Based on Dr. T.S. Kelso's quite helpful
article "Orbital Coordinate Systems, Part III":
https://www.celestrak.com/columns/v02n03/
"""
x, y, z = xyz_au
R = sqrt(x*x + y*y)
lon = (arctan2(y, x) - 15 * DEG2RAD * gast - pi) % tau - pi
lat = arctan2(z, R)
a = ERAD / AU_M
f = 1.0 / IERS_2010_INVERSE_EARTH_FLATTENING
e2 = 2.0*f - f*f
i = 0
C = 1.0
while i < iterations:
i += 1
C = 1.0 / sqrt(1.0 - e2 * (sin(lat) ** 2.0))
lat = arctan2(z + a * C * e2 * sin(lat), R)
elevation_m = ((R / cos(lat)) - a * C) * AU_M
earth_R = (a*C)*AU_M
return lat, lon, elevation_m, earth_R
def subpoint(self, iterations):
"""Return the latitude an longitude directly beneath this position.
Returns a :class:`~skyfield.toposlib.Topos` whose ``longitude``
and ``latitude`` are those of the point on the Earth's surface
directly beneath this position (according to the center of the
earth), and whose ``elevation`` is the height of this position
above the Earth's center.
"""
if self.center != 399: # TODO: should an __init__() check this?
raise ValueError("you can only ask for the geographic subpoint"
" of a position measured from Earth's center")
t = self.t
xyz_au = einsum('ij...,j...->i...', t.M, self.position.au)
lat, lon, elevation_m, self.earth_R = reverse_terra(xyz_au, t.gast, iterations)
from skyfield.toposlib import Topos
return Topos(latitude=Angle(radians=lat),
longitude=Angle(radians=lon),
elevation_m=elevation_m)
def earth_radius(self):
return self.earth_R
def satellite_visiable_area(earth_radius, satellite_elevation):
"""Returns the visible area from a satellite in square meters.
Formula is in the form is 2piR^2h/R+h where:
R = earth radius
h = satellite elevation from center of earth
"""
return ((2 * pi * ( earth_radius ** 2 ) *
( earth_radius + satellite_elevation)) /
(earth_radius + earth_radius + satellite_elevation))
stations_url = 'http://celestrak.com/NORAD/elements/stations.txt'
satellites = api.load.tle(stations_url)
satellite = satellites['ISS (ZARYA)']
print(satellite)
ts = api.load.timescale()
t = ts.now()
geocentric = satellite.at(t)
geocentric.subpoint = subpoint.__get__(geocentric, Geocentric)
geocentric.earth_radius = earth_radius.__get__(geocentric, Geocentric)
geodetic_sub = geocentric.subpoint(3)
print('Geodetic latitude:', geodetic_sub.latitude)
print('Geodetic longitude:', geodetic_sub.longitude)
print('Geodetic elevation (m)', int(geodetic_sub.elevation.m))
print('Geodetic earth radius (m)', int(geocentric.earth_radius()))
geocentric_sub = geocentric.subpoint(0)
print('Geocentric latitude:', geocentric_sub.latitude)
print('Geocentric longitude:', geocentric_sub.longitude)
print('Geocentric elevation (m)', int(geocentric_sub.elevation.m))
print('Geocentric earth radius (m)', int(geocentric.earth_radius()))
print('Visible area (m^2)', satellite_visiable_area(geocentric.earth_radius(),
geocentric_sub.elevation.m))
如何计算 EarthSatellite 下方的面积,以便绘制卫星经过时覆盖的大片土地?
Skyfield 中有什么可以促进这一点的吗?
编辑:只是想澄清卫星下方区域的意思。鉴于地球是一个椭球体,我需要绘制卫星下方可能观察到的最大区域。我知道如何绘制卫星路径,但现在我需要绘制一些线来表示卫星飞越地球时可见的区域。
您的编辑清楚地表明了您想要什么。可以很容易地计算卫星的可见区域(当地球被视为球体时)。 here 是获取可见部分背景知识的良好来源。当地球被视为扁球体时,要计算可见面积将困难得多(甚至可能是不可能的)。我认为最好将问题的那部分改革并post它放在数学上。
如果要计算地球被看成球体时的可见面积,我们需要在Skyfield
中做一些调整。使用 TLE api 加载卫星后,您可以轻松获得具有地球位置的子点。图书馆将此称为 Geocentric
位置,但实际上它是 Geodetic
位置(地球被视为扁球体)。要纠正这个问题,我们需要调整 Geocentric
class 的 subpoint
以使用 Geocentric
位置而不是 Geodetic
位置的计算。由于 reverse_terra
函数中的错误和信息缺失,我们还需要替换该函数。我们需要能够检索地球半径。结果如下:
from skyfield import api
from skyfield.positionlib import ICRF, Geocentric
from skyfield.constants import (AU_M, ERAD, DEG2RAD,
IERS_2010_INVERSE_EARTH_FLATTENING, tau)
from skyfield.units import Angle
from numpy import einsum, sqrt, arctan2, pi, cos, sin
def reverse_terra(xyz_au, gast, iterations=3):
"""Convert a geocentric (x,y,z) at time `t` to latitude and longitude.
Returns a tuple of latitude, longitude, and elevation whose units
are radians and meters. Based on Dr. T.S. Kelso's quite helpful
article "Orbital Coordinate Systems, Part III":
https://www.celestrak.com/columns/v02n03/
"""
x, y, z = xyz_au
R = sqrt(x*x + y*y)
lon = (arctan2(y, x) - 15 * DEG2RAD * gast - pi) % tau - pi
lat = arctan2(z, R)
a = ERAD / AU_M
f = 1.0 / IERS_2010_INVERSE_EARTH_FLATTENING
e2 = 2.0*f - f*f
i = 0
C = 1.0
while i < iterations:
i += 1
C = 1.0 / sqrt(1.0 - e2 * (sin(lat) ** 2.0))
lat = arctan2(z + a * C * e2 * sin(lat), R)
elevation_m = ((R / cos(lat)) - a * C) * AU_M
earth_R = (a*C)*AU_M
return lat, lon, elevation_m, earth_R
def subpoint(self, iterations):
"""Return the latitude an longitude directly beneath this position.
Returns a :class:`~skyfield.toposlib.Topos` whose ``longitude``
and ``latitude`` are those of the point on the Earth's surface
directly beneath this position (according to the center of the
earth), and whose ``elevation`` is the height of this position
above the Earth's center.
"""
if self.center != 399: # TODO: should an __init__() check this?
raise ValueError("you can only ask for the geographic subpoint"
" of a position measured from Earth's center")
t = self.t
xyz_au = einsum('ij...,j...->i...', t.M, self.position.au)
lat, lon, elevation_m, self.earth_R = reverse_terra(xyz_au, t.gast, iterations)
from skyfield.toposlib import Topos
return Topos(latitude=Angle(radians=lat),
longitude=Angle(radians=lon),
elevation_m=elevation_m)
def earth_radius(self):
return self.earth_R
def satellite_visiable_area(earth_radius, satellite_elevation):
"""Returns the visible area from a satellite in square meters.
Formula is in the form is 2piR^2h/R+h where:
R = earth radius
h = satellite elevation from center of earth
"""
return ((2 * pi * ( earth_radius ** 2 ) *
( earth_radius + satellite_elevation)) /
(earth_radius + earth_radius + satellite_elevation))
stations_url = 'http://celestrak.com/NORAD/elements/stations.txt'
satellites = api.load.tle(stations_url)
satellite = satellites['ISS (ZARYA)']
print(satellite)
ts = api.load.timescale()
t = ts.now()
geocentric = satellite.at(t)
geocentric.subpoint = subpoint.__get__(geocentric, Geocentric)
geocentric.earth_radius = earth_radius.__get__(geocentric, Geocentric)
geodetic_sub = geocentric.subpoint(3)
print('Geodetic latitude:', geodetic_sub.latitude)
print('Geodetic longitude:', geodetic_sub.longitude)
print('Geodetic elevation (m)', int(geodetic_sub.elevation.m))
print('Geodetic earth radius (m)', int(geocentric.earth_radius()))
geocentric_sub = geocentric.subpoint(0)
print('Geocentric latitude:', geocentric_sub.latitude)
print('Geocentric longitude:', geocentric_sub.longitude)
print('Geocentric elevation (m)', int(geocentric_sub.elevation.m))
print('Geocentric earth radius (m)', int(geocentric.earth_radius()))
print('Visible area (m^2)', satellite_visiable_area(geocentric.earth_radius(),
geocentric_sub.elevation.m))