在 Spark 中,出现 EOF 异常的原因是什么,寻找过去的文件结尾?

In Spark, What is the reason of getting EOF exception, Seek past end of file?

我正在从多个文件中读取一些数据(8 GB)数据,过滤数据进行一些空检查并在列上执行一些提升(操作),例如为此清理列值我有 6 到 7 个函数(自定义功能, 不能使用注册为 UDF 的 spark 函数)。然后我将最终结果写入表格和 CSV 文件,现在在 'dataframe.write.saveAsTable()' 和写入 'CSV' 时我得到 EOF 异常 Seek past end of file。这种异常不会每次都发生,比如我 运行 20 次它可能会发生一次。我无法找到它的原因和原因,因为它不可重现,(在 scala 和 pyspark 中都得到它),将不胜感激任何帮助或提示。期待。谢谢

---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<command-4146672194126555> in <module>()
    331 saveMergedLogs(
    332  dataframeLogs
    333 );

<command-3860558353011740> in saveMergedLogs(dataframeLogs)
     45   # ---------------------------------------------------------------------------------------------------------------------------------
     46   spark.sql("DROP TABLE IF EXISTS dbo.UsageLogs");
---> 47   dataframeLogs.write.saveAsTable("dbo.UsageLogs")

/databricks/spark/python/pyspark/sql/readwriter.py in saveAsTable(self, name, format, mode, partitionBy, **options)
    773         if format is not None:
    774             self.format(format)
--> 775         self._jwrite.saveAsTable(name)
    776 
    777     @since(1.4)

/databricks/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in __call__(self, *args)
   1255         answer = self.gateway_client.send_command(command)
   1256         return_value = get_return_value(
-> 1257             answer, self.gateway_client, self.target_id, self.name)
   1258 
   1259         for temp_arg in temp_args:

/databricks/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
     61     def deco(*a, **kw):
     62         try:
---> 63             return f(*a, **kw)
     64         except py4j.protocol.Py4JJavaError as e:
     65             s = e.java_exception.toString()

/databricks/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    326                 raise Py4JJavaError(
    327                     "An error occurred while calling {0}{1}{2}.\n".
--> 328                     format(target_id, ".", name), value)
    329             else:
    330                 raise Py4JError(

Py4JJavaError: An error occurred while calling o3615.saveAsTable.
: org.apache.spark.SparkException: Job aborted.
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:196)
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:192)
    at org.apache.spark.sql.execution.datasources.DataSource.writeAndRead(DataSource.scala:553)
    at org.apache.spark.sql.execution.command.CreateDataSourceTableAsSelectCommand.saveDataIntoTable(createDataSourceTables.scala:216)
    at org.apache.spark.sql.execution.command.CreateDataSourceTableAsSelectCommand.run(createDataSourceTables.scala:175)
    at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:110)
    at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:108)
    at org.apache.spark.sql.execution.command.DataWritingCommandExec.doExecute(commands.scala:128)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute.apply(SparkPlan.scala:143)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute.apply(SparkPlan.scala:131)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery.apply(SparkPlan.scala:183)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:180)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:131)
    at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:114)
    at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:114)
    at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand.apply(DataFrameWriter.scala:690)
    at org.apache.spark.sql.DataFrameWriter$$anonfun$runCommand.apply(DataFrameWriter.scala:690)
    at org.apache.spark.sql.execution.SQLExecution$$anonfun$withCustomExecutionEnv.apply(SQLExecution.scala:99)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:228)
    at org.apache.spark.sql.execution.SQLExecution$.withCustomExecutionEnv(SQLExecution.scala:85)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:158)
    at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:690)
    at org.apache.spark.sql.DataFrameWriter.createTable(DataFrameWriter.scala:487)
    at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:466)
    at org.apache.spark.sql.DataFrameWriter.saveAsTable(DataFrameWriter.scala:414)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380)
    at py4j.Gateway.invoke(Gateway.java:295)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:251)
    at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 9 in stage 58.0 failed 4 times, most recent failure: Lost task 9.3 in stage 58.0 (TID 8630, 10.139.64.7, executor 0): java.io.EOFException: Cannot seek past end of file
    at com.microsoft.azure.datalake.store.ADLFileInputStream.seek(ADLFileInputStream.java:262)
    at com.databricks.adl.AdlFsInputStream.seek(AdlFsInputStream.java:64)
    at org.apache.hadoop.fs.FSDataInputStream.seek(FSDataInputStream.java:62)
    at com.databricks.spark.metrics.FSInputStreamWithMetrics.seek(FileSystemWithMetrics.scala:207)
    at org.apache.hadoop.fs.FSDataInputStream.seek(FSDataInputStream.java:62)
    at org.apache.hadoop.mapreduce.lib.input.LineRecordReader.initialize(LineRecordReader.java:107)
    at org.apache.spark.sql.execution.datasources.HadoopFileLinesReader.<init>(HadoopFileLinesReader.scala:65)
    at org.apache.spark.sql.execution.datasources.HadoopFileLinesReader.<init>(HadoopFileLinesReader.scala:47)
    at org.apache.spark.sql.execution.datasources.csv.TextInputCSVDataSource$.readFile(CSVDataSource.scala:201)
    at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader.apply(CSVFileFormat.scala:147)
    at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader.apply(CSVFileFormat.scala:140)
    at org.apache.spark.sql.execution.datasources.FileFormat$$anon.apply(FileFormat.scala:147)
    at org.apache.spark.sql.execution.datasources.FileFormat$$anon.apply(FileFormat.scala:134)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$$anon.getNext(FileScanRDD.scala:226)
    at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon.hasNext(FileScanRDD.scala:196)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon.nextIterator(FileScanRDD.scala:338)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon.hasNext(FileScanRDD.scala:196)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage443.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$$anon.hasNext(WholeStageCodegenExec.scala:622)
    at scala.collection.Iterator$$anon.hasNext(Iterator.scala:408)
    at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
    at org.apache.spark.scheduler.Task.doRunTask(Task.scala:139)
    at org.apache.spark.scheduler.Task.run(Task.scala:112)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun.apply(Executor.scala:497)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1432)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:503)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:2100)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:2088)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage.apply(DAGScheduler.scala:2087)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2087)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed.apply(DAGScheduler.scala:1076)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed.apply(DAGScheduler.scala:1076)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1076)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2319)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2267)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2255)
    at org.apache.spark.util.EventLoop$$anon.run(EventLoop.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:873)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2252)
    at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:166)
    ... 36 more
Caused by: java.io.EOFException: Cannot seek past end of file
    at com.microsoft.azure.datalake.store.ADLFileInputStream.seek(ADLFileInputStream.java:262)
    at com.databricks.adl.AdlFsInputStream.seek(AdlFsInputStream.java:64)
    at org.apache.hadoop.fs.FSDataInputStream.seek(FSDataInputStream.java:62)
    at com.databricks.spark.metrics.FSInputStreamWithMetrics.seek(FileSystemWithMetrics.scala:207)
    at org.apache.hadoop.fs.FSDataInputStream.seek(FSDataInputStream.java:62)
    at org.apache.hadoop.mapreduce.lib.input.LineRecordReader.initialize(LineRecordReader.java:107)
    at org.apache.spark.sql.execution.datasources.HadoopFileLinesReader.<init>(HadoopFileLinesReader.scala:65)
    at org.apache.spark.sql.execution.datasources.HadoopFileLinesReader.<init>(HadoopFileLinesReader.scala:47)
    at org.apache.spark.sql.execution.datasources.csv.TextInputCSVDataSource$.readFile(CSVDataSource.scala:201)
    at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader.apply(CSVFileFormat.scala:147)
    at org.apache.spark.sql.execution.datasources.csv.CSVFileFormat$$anonfun$buildReader.apply(CSVFileFormat.scala:140)
    at org.apache.spark.sql.execution.datasources.FileFormat$$anon.apply(FileFormat.scala:147)
    at org.apache.spark.sql.execution.datasources.FileFormat$$anon.apply(FileFormat.scala:134)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$$anon.getNext(FileScanRDD.scala:226)
    at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon.hasNext(FileScanRDD.scala:196)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon.nextIterator(FileScanRDD.scala:338)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon.hasNext(FileScanRDD.scala:196)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage443.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$$anon.hasNext(WholeStageCodegenExec.scala:622)
    at scala.collection.Iterator$$anon.hasNext(Iterator.scala:408)
    at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
    at org.apache.spark.scheduler.Task.doRunTask(Task.scala:139)
    at org.apache.spark.scheduler.Task.run(Task.scala:112)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun.apply(Executor.scala:497)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1432)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:503)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more

所以我做了很多工作,但没有解决方案。我管理的方式是在 ADF 数据块 activity 中指定重试。因此,每当出现此问题时,它都可以在数据块中重新运行笔记本并通过。这仍然不是一个完美的解决方案,但它确实有效。

我在从多个文件读取数据时遇到了同样的问题。这些文件具有相同的列,但列的顺序不完全相同。由于在 pandas 中,我们可以在附加 DataFrame 时设置 sort=True ,这样不同位置的相同列就不会混淆,我怀疑是列的顺序导致了问题。我不是 100% 确定,但在我用相同的列顺序重写文件后它起作用了。