在 MetPy 中计算多个垂直水平的涡度
Calculating vorticity for multiple vertical levels in MetPy
我正在尝试在 MetPy 中计算多个(连续)垂直水平的涡度。当我尝试为单个级别计算它时,一切正常。
这是代码;我使用了来自 https://unidata.github.io/MetPy/latest/examples/cross_section.html#sphx-glr-examples-cross-section-py.
的横截面示例
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
import metpy.calc as mpcalc
from metpy.cbook import get_test_data
from metpy.interpolate import cross_section
from metpy.units import units
data = xr.open_dataset(get_test_data('narr_example.nc', False))
data = data.metpy.parse_cf().squeeze()
data_crs = data['Temperature'].metpy.cartopy_crs
lat = data['lat']
lon = data['lon']
f = mpcalc.coriolis_parameter(lat)
dx, dy = mpcalc.lat_lon_grid_deltas(lon, lat, initstring=data_crs.proj4_init)
然后进行涡度的计算
vort = mpcalc.vorticity(data['u_wind'], data['v_wind'], dx, dy)
回溯:
Traceback (most recent call last):
File "E:\Временные файлы\cross_section (1).py", line 63, in <module>
vort = mpcalc.vorticity(data['u_wind'], data['v_wind'], dx, dy)
File "C:\ProgramData\Miniconda3\lib\site-packages\metpy\xarray.py", line 436, in wrapper
return func(*args, **kwargs)
File "C:\ProgramData\Miniconda3\lib\site-packages\metpy\calc\kinematics.py", line 60, in wrapper
ret = func(*args, **kwargs)
File "C:\ProgramData\Miniconda3\lib\site-packages\metpy\calc\kinematics.py", line 121, in vorticity
dudy = first_derivative(u, delta=dy, axis=-2)
File "C:\ProgramData\Miniconda3\lib\site-packages\metpy\calc\tools.py", line 920, in wrapper
return preprocess_xarray(func)(f, **kwargs)
File "C:\ProgramData\Miniconda3\lib\site-packages\metpy\xarray.py", line 436, in wrapper
return func(*args, **kwargs)
File "C:\ProgramData\Miniconda3\lib\site-packages\metpy\calc\tools.py", line 1014, in first_derivative
combined_delta = delta[tuple(delta_slice0)] + delta[tuple(delta_slice1)]
File "C:\ProgramData\Miniconda3\lib\site-packages\pint\quantity.py", line 1400, in __getitem__
value = self._magnitude[key]
IndexError: too many indices for array
我完全卡住了。搜索 "metpy multiple levels calculations"(没有实际引号)没有给出相关结果。
文档说:
metpy.calc.vorticity(u, v, dx, dy)[source]
Calculate the vertical vorticity of the horizontal wind.
Parameters:
u ((M, N) ndarray) – x component of the wind
v ((M, N) ndarray) – y component of the wind
dx (float or ndarray) – The grid spacing(s) in the x-direction. If an array, there should be one item less than the size of u along the applicable axis.
dy (float or ndarray) – The grid spacing(s) in the y-direction. If an array, there should be one item less than the size of u along the applicable axis.
dim_order (str or None, optional) – The ordering of dimensions in passed in arrays. Can be one of None, 'xy', or 'yx'. 'xy' indicates that the dimension corresponding to x is the leading dimension, followed by y. 'yx' indicates that x is the last dimension, preceded by y. None indicates that the default ordering should be assumed, which is ‘yx’. Can only be passed as a keyword argument, i.e. func(…, dim_order=’xy’).
Returns:
(M, N) ndarray – vertical vorticity
我得出结论,输入可以有超过 2 维,但 3 维输入(在我的例子中)会出错。可以做些什么来修复它们?
我对 Python 完全陌生,所以我可能犯了一个愚蠢的错误。
不幸的是,如果您不知道要查找什么,出现的错误消息在这种情况下没有多大帮助!
示例中 vorticity
函数调用的问题是输入变量的维数不匹配。 data['u_wind']
和 data['v_wind']
是形状为 (29, 118, 292)
的 3D 数组,但是 dx
和 dy
,因为它们是根据 lat_lon_grid_deltas
计算的,所以是具有形状分别为 (118, 291)
和 (117, 292)
。因此,我们需要获得能够适当广播的数组……您可以通过多种不同的方式做到这一点,但我推荐以下两个选项:
选项 1:手动广播
由于 dx
和 dy
缺少的 "extra" 维度是第一个维度(在垂直方向),我们可以使 dx
和 dy
通过插入一个大小为一的前导维度来正确对齐的 3D 数组:
dx, dy = mpcalc.lat_lon_grid_deltas(lon, lat, initstring=data_crs.proj4_init)
dx = dx[None, :]
dy = dy[None, :]
vort = mpcalc.vorticity(data['u_wind'], data['v_wind'], dx, dy)
选项 2:使用 grid_deltas_from_dataarray()
辅助函数
MetPy 还有一个辅助函数,可以轻松地从 xarray DataArray 中提取网格增量。它还确保广播正确发生,因此您不必自己做。在您的示例中使用它,它将是:
dx, dy = mpcalc.grid_deltas_from_dataarray(data['u_wind'])
vort = mpcalc.vorticity(data['u_wind'], data['v_wind'], dx, dy)
我正在尝试在 MetPy 中计算多个(连续)垂直水平的涡度。当我尝试为单个级别计算它时,一切正常。
这是代码;我使用了来自 https://unidata.github.io/MetPy/latest/examples/cross_section.html#sphx-glr-examples-cross-section-py.
的横截面示例import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
import metpy.calc as mpcalc
from metpy.cbook import get_test_data
from metpy.interpolate import cross_section
from metpy.units import units
data = xr.open_dataset(get_test_data('narr_example.nc', False))
data = data.metpy.parse_cf().squeeze()
data_crs = data['Temperature'].metpy.cartopy_crs
lat = data['lat']
lon = data['lon']
f = mpcalc.coriolis_parameter(lat)
dx, dy = mpcalc.lat_lon_grid_deltas(lon, lat, initstring=data_crs.proj4_init)
然后进行涡度的计算
vort = mpcalc.vorticity(data['u_wind'], data['v_wind'], dx, dy)
回溯:
Traceback (most recent call last):
File "E:\Временные файлы\cross_section (1).py", line 63, in <module>
vort = mpcalc.vorticity(data['u_wind'], data['v_wind'], dx, dy)
File "C:\ProgramData\Miniconda3\lib\site-packages\metpy\xarray.py", line 436, in wrapper
return func(*args, **kwargs)
File "C:\ProgramData\Miniconda3\lib\site-packages\metpy\calc\kinematics.py", line 60, in wrapper
ret = func(*args, **kwargs)
File "C:\ProgramData\Miniconda3\lib\site-packages\metpy\calc\kinematics.py", line 121, in vorticity
dudy = first_derivative(u, delta=dy, axis=-2)
File "C:\ProgramData\Miniconda3\lib\site-packages\metpy\calc\tools.py", line 920, in wrapper
return preprocess_xarray(func)(f, **kwargs)
File "C:\ProgramData\Miniconda3\lib\site-packages\metpy\xarray.py", line 436, in wrapper
return func(*args, **kwargs)
File "C:\ProgramData\Miniconda3\lib\site-packages\metpy\calc\tools.py", line 1014, in first_derivative
combined_delta = delta[tuple(delta_slice0)] + delta[tuple(delta_slice1)]
File "C:\ProgramData\Miniconda3\lib\site-packages\pint\quantity.py", line 1400, in __getitem__
value = self._magnitude[key]
IndexError: too many indices for array
我完全卡住了。搜索 "metpy multiple levels calculations"(没有实际引号)没有给出相关结果。 文档说:
metpy.calc.vorticity(u, v, dx, dy)[source]
Calculate the vertical vorticity of the horizontal wind.
Parameters:
u ((M, N) ndarray) – x component of the wind
v ((M, N) ndarray) – y component of the wind
dx (float or ndarray) – The grid spacing(s) in the x-direction. If an array, there should be one item less than the size of u along the applicable axis.
dy (float or ndarray) – The grid spacing(s) in the y-direction. If an array, there should be one item less than the size of u along the applicable axis.
dim_order (str or None, optional) – The ordering of dimensions in passed in arrays. Can be one of None, 'xy', or 'yx'. 'xy' indicates that the dimension corresponding to x is the leading dimension, followed by y. 'yx' indicates that x is the last dimension, preceded by y. None indicates that the default ordering should be assumed, which is ‘yx’. Can only be passed as a keyword argument, i.e. func(…, dim_order=’xy’).
Returns:
(M, N) ndarray – vertical vorticity
我得出结论,输入可以有超过 2 维,但 3 维输入(在我的例子中)会出错。可以做些什么来修复它们?
我对 Python 完全陌生,所以我可能犯了一个愚蠢的错误。
不幸的是,如果您不知道要查找什么,出现的错误消息在这种情况下没有多大帮助!
示例中 vorticity
函数调用的问题是输入变量的维数不匹配。 data['u_wind']
和 data['v_wind']
是形状为 (29, 118, 292)
的 3D 数组,但是 dx
和 dy
,因为它们是根据 lat_lon_grid_deltas
计算的,所以是具有形状分别为 (118, 291)
和 (117, 292)
。因此,我们需要获得能够适当广播的数组……您可以通过多种不同的方式做到这一点,但我推荐以下两个选项:
选项 1:手动广播
由于 dx
和 dy
缺少的 "extra" 维度是第一个维度(在垂直方向),我们可以使 dx
和 dy
通过插入一个大小为一的前导维度来正确对齐的 3D 数组:
dx, dy = mpcalc.lat_lon_grid_deltas(lon, lat, initstring=data_crs.proj4_init)
dx = dx[None, :]
dy = dy[None, :]
vort = mpcalc.vorticity(data['u_wind'], data['v_wind'], dx, dy)
选项 2:使用 grid_deltas_from_dataarray()
辅助函数
MetPy 还有一个辅助函数,可以轻松地从 xarray DataArray 中提取网格增量。它还确保广播正确发生,因此您不必自己做。在您的示例中使用它,它将是:
dx, dy = mpcalc.grid_deltas_from_dataarray(data['u_wind'])
vort = mpcalc.vorticity(data['u_wind'], data['v_wind'], dx, dy)