枚举按 Python 中的两个字段排序的列表

Enumerate a list sorted by two fields in Python

我有一个这样的数组:
字段 4 是 1,2,3 的平均值,字段 5 是 1,2,3 的最小值。

[['name0', 24, 19, 25, 22.67, 19],
 ['name1', 25, 19, 25, 23.0, 19],
 ['name2', 25, 19, 25, 23.0, 19],
 ['name3', 24, 22, 23, 23.0, 22],
 ['name4', 27, 19, 25, 23.67, 19],
 ['name5', 27, 19, 25, 23.67, 19],
 ['name6', 28, 19, 26, 24.33, 19],
 ['name7', 28, 19, 26, 24.33, 19],
 ['name8', 28, 19, 26, 24.33, 19],
 ['name9', 26, 22, 27, 25.0, 22],
 ['name10', 27, 23, 25, 25.0, 23],
 ['name11', 30, 19, 27, 25.33, 19],
 ['name12', 24, 31, 28, 27.67, 24],
 ['name13', 28, 27, 28, 27.67, 27],
 ['name14', 27, 29, 27, 27.67, 27],
 ['name15', 29, 26, 29, 28.0, 26],
 ['name16', 29, 26, 30, 28.33, 26],
 ['name17', 30, 31, 26, 29.0, 26],
 ['name18', 33, 27, 30, 30.0, 27],
 ['name19', 29, 31, 30, 30.0, 29],
 ['name20', 30, 36, 31, 32.33, 30],
 ['name21', 36, 30, 32, 32.67, 30],
 ['name22', 38, 33, 36, 35.67, 33],
 ['name23', 30, 27, 99, 52.0, 27],
 ['name24', 99, 27, 32, 52.67, 27],
 ['name25', 37, 99, 36, 57.33, 36]]

已按字段 4 排序,然后按字段 5 排序。
我希望枚举此列表,创建一种 "ranking" 或 "podium"。

enumerate() 不起作用,因为如您所见,某些字段与字段 4 和 5 相关联,因此它们的"rank"应该是一样的。
例如,第一个值应如下所示:

[['1', 'name0', 24, 19, 25, 22.67, 19],
 ['2', 'name1', 25, 19, 25, 23.0, 19],
 ['2', 'name2', 25, 19, 25, 23.0, 19],
 ['3', 'name3', 24, 22, 23, 23.0, 22],
 ['4', 'name4', 27, 19, 25, 23.67, 19],
 ...]

无法找到解决此问题的简洁方法。 感谢您的帮助。

i = 1 开始,遍历它们并分配排名,如果下一行不同,则仅递增 i += 1

假设列表已排序,您可以使用...恰当命名的 groupby, and itemgetter 按第 4 和第 5 个元素对子列表进行分组。在 groupby:

返回的迭代器上使用 enumerate
from itertools import groupby
from operator import itemgetter

# data = [['name0', ...
[ [str(i+1)] + l for i, (k, g) in enumerate(groupby(data, key=itemgetter(4, 5))) for l in g ]

输出:

[
    ['1', 'name0', 24, 19, 25, 22.67, 19],
    ['2', 'name1', 25, 19, 25, 23.0, 19],
    ['2', 'name2', 25, 19, 25, 23.0, 19],
    ['3', 'name3', 24, 22, 23, 23.0, 22],
    ['4', 'name4', 27, 19, 25, 23.67, 19],
    ['4', 'name5', 27, 19, 25, 23.67, 19],
    ['5', 'name6', 28, 19, 26, 24.33, 19],
    ['5', 'name7', 28, 19, 26, 24.33, 19],
    ['5', 'name8', 28, 19, 26, 24.33, 19],
    ['6', 'name9', 26, 22, 27, 25.0, 22],
    ['7', 'name10', 27, 23, 25, 25.0, 23],
    ['8', 'name11', 30, 19, 27, 25.33, 19],
    ['9', 'name12', 24, 31, 28, 27.67, 24],
    ['10', 'name13', 28, 27, 28, 27.67, 27],
    ['10', 'name14', 27, 29, 27, 27.67, 27],
    ['11', 'name15', 29, 26, 29, 28.0, 26],
    ['12', 'name16', 29, 26, 30, 28.33, 26],
    ['13', 'name17', 30, 31, 26, 29.0, 26],
    ['14', 'name18', 33, 27, 30, 30.0, 27],
    ['15', 'name19', 29, 31, 30, 30.0, 29],
    ['16', 'name20', 30, 36, 31, 32.33, 30],
    ['17', 'name21', 36, 30, 32, 32.67, 30],
    ['18', 'name22', 38, 33, 36, 35.67, 33],
    ['19', 'name23', 30, 27, 99, 52.0, 27],
    ['20', 'name24', 99, 27, 32, 52.67, 27],
    ['21', 'name25', 37, 99, 36, 57.33, 36]
]

使用 Pandasdense rank:

import pandas as pd

df = pd.DataFrame(data = [['name0', 24, 19, 25, 22.67, 19],
 ['name1', 25, 19, 25, 23.0, 19],
 ['name2', 25, 19, 25, 23.0, 19],
 ['name3', 24, 22, 23, 23.0, 22],
 ['name4', 27, 19, 25, 23.67, 19],
 ['name5', 27, 19, 25, 23.67, 19],
 ['name6', 28, 19, 26, 24.33, 19],
 ['name7', 28, 19, 26, 24.33, 19],
 ['name8', 28, 19, 26, 24.33, 19],
 ['name9', 26, 22, 27, 25.0, 22],
 ['name10', 27, 23, 25, 25.0, 23],
 ['name11', 30, 19, 27, 25.33, 19],
 ['name12', 24, 31, 28, 27.67, 24],
 ['name13', 28, 27, 28, 27.67, 27],
 ['name14', 27, 29, 27, 27.67, 27],
 ['name15', 29, 26, 29, 28.0, 26],
 ['name16', 29, 26, 30, 28.33, 26],
 ['name17', 30, 31, 26, 29.0, 26],
 ['name18', 33, 27, 30, 30.0, 27],
 ['name19', 29, 31, 30, 30.0, 29],
 ['name20', 30, 36, 31, 32.33, 30],
 ['name21', 36, 30, 32, 32.67, 30],
 ['name22', 38, 33, 36, 35.67, 33],
 ['name23', 30, 27, 99, 52.0, 27],
 ['name24', 99, 27, 32, 52.67, 27],
 ['name25', 37, 99, 36, 57.33, 36]], columns= ['1', '2', '3', '4', '5', '6'])

df["rank"] = df['5'].rank(method = "dense")
df

>
    1   2   3   4   5   6   rank
0   name0   24  19  25  22.67   19  1.0
1   name1   25  19  25  23.00   19  2.0
2   name2   25  19  25  23.00   19  2.0
3   name3   24  22  23  23.00   22  2.0
4   name4   27  19  25  23.67   19  3.0
5   name5   27  19  25  23.67   19  3.0
6   name6   28  19  26  24.33   19  4.0
7   name7   28  19  26  24.33   19  4.0
8   name8   28  19  26  24.33   19  4.0
9   name9   26  22  27  25.00   22  5.0
10  name10  27  23  25  25.00   23  5.0
11  name11  30  19  27  25.33   19  6.0
12  name12  24  31  28  27.67   24  7.0
13  name13  28  27  28  27.67   27  7.0
14  name14  27  29  27  27.67   27  7.0
15  name15  29  26  29  28.00   26  8.0
16  name16  29  26  30  28.33   26  9.0
17  name17  30  31  26  29.00   26  10.0
18  name18  33  27  30  30.00   27  11.0
19  name19  29  31  30  30.00   29  11.0
20  name20  30  36  31  32.33   30  12.0
21  name21  36  30  32  32.67   30  13.0
22  name22  38  33  36  35.67   33  14.0
23  name23  30  27  99  52.00   27  15.0
24  name24  99  27  32  52.67   27  16.0
25  name25  37  99  36  57.33   36  17.0

如果你想要列表的列表 -

df = df.set_index('rank').reset_index()
df.values.tolist()

您可以在用 None 值填充其中一项后通过压缩列表自身来配对相邻项,这样您就可以遍历压缩对以比较关键字段,如果它们相同, 重复使用之前的排名:

for i, ((*_, prev_mean, prev_min), (*_, mean, _min)) in enumerate(zip([(None, None)] + l, l)):
    l[i].insert(0, str(l[i - 1][0] if mean == prev_mean and _min == prev_min else i + 1))

假设您的列表列表存储为变量 ll 变为:

[['1', 'name0', 24, 19, 25, 22.67, 19],
 ['2', 'name1', 25, 19, 25, 23.0, 19],
 ['2', 'name2', 25, 19, 25, 23.0, 19],
 ['4', 'name3', 24, 22, 23, 23.0, 22],
 ['5', 'name4', 27, 19, 25, 23.67, 19],
 ['5', 'name5', 27, 19, 25, 23.67, 19],
 ['7', 'name6', 28, 19, 26, 24.33, 19],
 ['7', 'name7', 28, 19, 26, 24.33, 19],
 ['7', 'name8', 28, 19, 26, 24.33, 19],
 ['10', 'name9', 26, 22, 27, 25.0, 22],
 ['11', 'name10', 27, 23, 25, 25.0, 23],
 ['12', 'name11', 30, 19, 27, 25.33, 19],
 ['13', 'name12', 24, 31, 28, 27.67, 24],
 ['14', 'name13', 28, 27, 28, 27.67, 27],
 ['14', 'name14', 27, 29, 27, 27.67, 27],
 ['16', 'name15', 29, 26, 29, 28.0, 26],
 ['17', 'name16', 29, 26, 30, 28.33, 26],
 ['18', 'name17', 30, 31, 26, 29.0, 26],
 ['19', 'name18', 33, 27, 30, 30.0, 27],
 ['20', 'name19', 29, 31, 30, 30.0, 29],
 ['21', 'name20', 30, 36, 31, 32.33, 30],
 ['22', 'name21', 36, 30, 32, 32.67, 30],
 ['23', 'name22', 38, 33, 36, 35.67, 33],
 ['24', 'name23', 30, 27, 99, 52.0, 27],
 ['25', 'name24', 99, 27, 32, 52.67, 27],
 ['26', 'name25', 37, 99, 36, 57.33, 36]]