如何将具有不同参数的多个sklearn算法应用于多个数据帧?

how to apply multiple sklearn algorithms with different parameters to multiple data frames?

我正在寻找一种将多个 sklearn 聚类算法应用于多个数据帧而无需过多重复的有效方法。

import pandas as pd
import numpy as np
from sklearn.datasets import make_moons,make_blobs
from sklearn.cluster import KMeans, DBSCAN
from matplotlib import pyplot

X1, y1 = make_moons(n_samples=100, noise=0.1)
X2, y2 = make_blobs(n_samples=100, centers=3, n_features=2)

我想对这些数据集应用 kmeans 和 dbscan,但每个数据集需要不同的参数,我如何使用循环将多个模型应用于多个数据并最终将它们绘制在网格中?谢谢

您已经创建了一些字典来为每个数据集定义超参数|clustering_algo 组合。

可能以下方法对您有用! [根据 sklearn 集群的文档开发]

import pandas as pd
import numpy as np
from sklearn.datasets import make_moons,make_blobs
from sklearn.cluster import KMeans, DBSCAN
from matplotlib import pyplot as plt

noisy_moons = make_moons(n_samples=100, noise=0.1)
blobs = make_blobs(n_samples=100, centers=3 , center_box = (-1,1),cluster_std=0.1)

colors = np.array(['#377eb8', '#ff7f00', '#4daf4a',
                   '#f781bf', '#a65628', '#984ea3',
                   '#999999', '#e41a1c', '#dede00'])

#defining the clustering algo which we want to try
clustering_models = [KMeans,DBSCAN]

from collections import namedtuple
Model = namedtuple('Model', ['name', 'model'])
models = [Model(model.__module__.split('.')[-1][:-1], model) 
          for model in clustering_models]

#defn of params for each dataset|clustering_algo
datasets_w_hyperparams = [(noisy_moons[0], 
                           {models[0][0]: {'n_clusters': 2}, models[1][0]: {'eps': .3, }}),
                          (blobs[0], 
                           {models[0][0]: {'n_clusters': 2}, models[1][0]: {'eps': .1, }})]

f,axes=plt.subplots(len(datasets_w_hyperparams),len(models),figsize = (15,10))
for data_id,(dataset,params) in enumerate(datasets_w_hyperparams):
    for model_id,model in enumerate(models):
        ax = axes[data_id][model_id]
        name, clus_model = model
        pred = clus_model(**params[name]).fit_predict(dataset)
        ax.scatter(dataset[:,0],dataset[:,1], s=20, color= colors[pred])
        ax.set_title(name)
plt.show()