如何在神经网络中应用权重?

How to apply weights in neural network?

我正在尝试学习如何实现神经网络。我似乎在任何地方都找不到的一件主要事情是如何应用和存储权重。我通过手动为每个输出执行所有乘法,使其在一个简单的 [2 输入,4 输出] 网络中工作。但现在我有 4 个输入、4 个隐藏在 2 层中和 4 个输出,并将它们存储在一个 4x4x2 数组中。我似乎无法掌握如何使用 for 循环来应用它。下面的当前代码显示了我目前拥有的内容,被注释为神经网络的部分是我目前正在尝试弄清楚的。

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
//Import SFML
using SFML.Graphics;
using SFML.System;
using SFML.Window;
namespace GeneticAlgorithims
{
    class Program
    {
        //Neural Network Variables
        public static int Inputs = 4;
        public static int Outputs = 4;
        public static int Hiddens = 2;
        //End Variables
        public static Random rand = new Random();
        public static List<Organism> organisms = new List<Organism>();
        public static RenderWindow window = new RenderWindow(new VideoMode(800,600), "Neural Networks", Styles.Default, new ContextSettings(512, 512, 16));
        static void Main(string[] args)
        {
            Generate();
            while(window.IsOpen)
            {
                window.DispatchEvents();
                Update();
                window.Clear(Color.Cyan);
                Draw();
                window.Display();
            }
        }

        static void Generate()
        {
            for (int x = 0; x < 2; x++)
            {
                organisms.Add(new Organism(new Vector2f(rand.Next(0, (int)window.Size.X), rand.Next(0, (int)window.Size.Y)), new Matrix(new double[Inputs, Inputs, Hiddens])));
            }

            foreach (Organism organism in organisms)
            {
                organism.color = new Color((byte)rand.Next(0, 255),(byte)rand.Next(0, 255),(byte)rand.Next(0, 255));
                organism.rotation = rand.Next(1, 360);
            }
        }

        static void Update()
        {
            //Image map = window.Capture();
            foreach(Organism organism in organisms)
            {
                //Get Near Organism
                Organism near = new Organism();
                foreach (Organism check in organisms)
                {
                    if (check != organism)
                    {
                        if (Math.Abs(check.position.X - organism.position.X) < 128)
                        {
                            if (Math.Abs(check.position.Y - organism.position.Y) < 128)
                            {
                                near = check;
                            }
                        }
                    }
                }
                //Begin Neural Network
                int CurrentColor = near.color.R;
                float DistanceX = (near.position != null) ? Math.Abs(near.position.X - organism.position.X) : 0;
                float DistanceY = (near.position != null) ? Math.Abs(near.position.Y - organism.position.Y) : 0;
                float Health = organism.Health;
                Console.WriteLine(CurrentColor);
                for (int A = 0; A < Inputs; A++)
                {
                    for (int B = 0; B < Outputs; B += 4)
                    {
                        for (int C = 0; C < Hiddens; C++)
                        {
                            organism.rotation += 
                        } 
                    } 
                }
                    //End Neural Network
                    organism.Age++;
                organism.position.X += organism.Speed * (float)Math.Cos(organism.rotation * 0.0174f);
                organism.position.Y += organism.Speed * (float)Math.Sin(organism.rotation * 0.0174f);

                float X = organism.position.X;
                float Y = organism.position.Y;
                if (organism.position.X > window.Size.X) organism.position.X = 0;
                if (organism.position.X < 0) organism.position.X = window.Size.X;
                if (organism.position.Y > window.Size.Y) organism.position.Y = 0;
                if (organism.position.Y < 0) organism.position.Y = window.Size.Y;

                if(organism.Age % 2500 == 0)
                {
                    Organism newOrganism = new Organism(organism.position, organism.brain);
                    newOrganism.rotation = rand.Next(0, 360);
                    newOrganism.color = organism.color;
                    //organisms.Add(newOrganism);
                    //return;
                }
                if (organism.Age > 3000)
                {
                    //organisms.Remove(organism);
                    //return;
                }
            }
        }

        static void Draw()
        {
            Sprite bufferSprite = new Sprite(new Texture("img.png"));
            foreach (Organism organism in organisms)
            {

                Vertex[] line = new Vertex[2];
                line[0] = new Vertex(organism.position, Color.Red);
                line[1] = new Vertex(new Vector2f(organism.position.X + (float)(120 * Math.Cos((organism.rotation - 30) * 0.0174)), organism.position.Y + (float)(120 * Math.Sin((organism.rotation - 30) * 0.0174))), Color.Red);
                window.Draw(line, PrimitiveType.Lines);

                line[0] = new Vertex(organism.position, Color.Red);
                line[1] = new Vertex(new Vector2f(organism.position.X + (float)(120 * Math.Cos((organism.rotation + 30) * 0.0174)), organism.position.Y + (float)(120 * Math.Sin((organism.rotation + 30) * 0.0174))), Color.Red);
                window.Draw(line, PrimitiveType.Lines);

                bufferSprite.Origin = new Vector2f(8, 8);
                bufferSprite.Color = organism.color;
                bufferSprite.Rotation = organism.rotation;
                bufferSprite.Position = organism.position;
                window.Draw(bufferSprite);

            }
        }
    }
}

因此,正如我在评论中所说,您将拥有一个带权重的层 class 和一个网络 class。在大多数情况下,没有必要将事情分解得更小。

所以对于层 class,我们有 N 个权重加上一个偏差:

class Layer
{
    double[] weights;
    int nOut, nIn;
    Layer(int inputs, int outputs)
    {
        nIn=inputs; nOut=outputs;
        weights=new double[(inputs+1)*outputs]; //Assume random weights chosen
    }

    double[] processInput(double[] in)
    {
        double[] out=new double[nOut]; //initialise all to zero
        for(int i=0; i<nOut; i++)
        {
            out[i] = weights[(i+1)*nIn] //bias always present
            for(int j=0; j<nIn; j++)
            {
                out[i] +=in[j]*weights[(i+1)*nIn+j +1] //skips bias
            }
            out[i]=activationFunction(out[i])
        }
        return out
    }
}

然后为网络class

class Network
{
    List<Layer>
    //skipping adding and setting up layers

    double[] processInput(double[] in)
    {
        double[] temp=in;
        for(Layer l:layers)
        {
            temp=layer.processInput(temp); 
            //input for next layer is output from previous
        }
        return temp;
    }
}

希望这很清楚