计算二维 Numpy 数组中数字对频率的最有效方法

Most efficient way to calculate frequency of pairs of numbers in a 2D Numpy array

假设我有以下二维数组:

import numpy as np

np.random.seed(123)
a = np.random.randint(1, 6, size=(5, 3))

产生:

In [371]: a
Out[371]:
array([[3, 5, 3],
       [2, 4, 3],
       [4, 2, 2],
       [1, 2, 2],
       [1, 1, 2]])

是否有比 the following solution 更有效的(Numpy、Pandas 等)方法来计算所有数字对的频率?

from collections import Counter
from itertools import combinations

def pair_freq(a, sort=False, sort_axis=-1):
    a = np.asarray(a)
    if sort:
        a = np.sort(a, axis=sort_axis)
    res = Counter()
    for row in a:
        res.update(combinations(row, 2))
    return res

res = pair_freq(a)

制作类似的东西:

In [38]: res
Out[38]:
Counter({(3, 5): 1,
         (3, 3): 1,
         (5, 3): 1,
         (2, 4): 1,
         (2, 3): 1,
         (4, 3): 1,
         (4, 2): 2,
         (2, 2): 2,
         (1, 2): 4,
         (1, 1): 1})

或:

In [39]: res.most_common()
Out[39]:
[((1, 2), 4),
 ((4, 2), 2),
 ((2, 2), 2),
 ((3, 5), 1),
 ((3, 3), 1),
 ((5, 3), 1),
 ((2, 4), 1),
 ((2, 3), 1),
 ((4, 3), 1),
 ((1, 1), 1)]

PS 生成的数据集可能看起来不同 - 例如像多索引 Pandas DataFrame 或其他东西。

我试图增加 a 数组的维度并将 np.isin() 与所有对组合的列表一起使用,但我仍然无法摆脱循环。

更新:

(a) Are you interested only in the frequency of combinations of 2 numbers (and not interested in frequency of combinations of 3 numbers)?

是的,我只对成对组合(2 个数字)感兴趣

(b) Do you want to consider (3,5) as distinct from (5,3) or do you want to consider them as two occurrences of the same thing?

实际上这两种方法都很好——如果需要,我总是可以预先对我的数组进行排序:

a = np.sort(a, axis=1)

更新2:

Do you want the distinction between (a,b) and (b,a) to happen only due to the source column of a and b, or even otherwise? Do understand this question, please consider three rows [[1,2,1], [3,1,2], [1,2,5]]. What do you think should be the output here? What should be the distinct 2-tuples and what should be their frequencies?

In [40]: a = np.array([[1,2,1],[3,1,2],[1,2,5]])

In [41]: a
Out[41]:
array([[1, 2, 1],
       [3, 1, 2],
       [1, 2, 5]])

我希望得到以下结果:

In [42]: pair_freq(a).most_common()
Out[42]:
[((1, 2), 3),
 ((1, 1), 1),
 ((2, 1), 1),
 ((3, 1), 1),
 ((3, 2), 1),
 ((1, 5), 1),
 ((2, 5), 1)]

因为它更灵活,所以我想将 (a, b) 和 (b, a) 算作同一对元素我可以这样做:

In [43]: pair_freq(a, sort=True).most_common()
Out[43]: [((1, 2), 4), ((1, 1), 1), ((1, 3), 1), ((2, 3), 1), ((1, 5), 1), ((2, 5), 1)]

如果你的元素不是太大的非负整数bincount很快:

from collections import Counter
from itertools import combinations
import numpy as np

def pairs(a):
    M = a.max() + 1
    a = a.T
    return sum(np.bincount((M * a[j] + a[j+1:]).ravel(), None, M*M)
               for j in range(len(a) - 1)).reshape(M, M)

def pairs_F_3(a):
    M = a.max() + 1
    return (np.bincount(a[1:].ravel() + M*a[:2].ravel(), None, M*M) +
            np.bincount(a[2].ravel() + M*a[0].ravel(), None, M*M))

def pairs_F(a):
    M = a.max() + 1
    a = np.ascontiguousarray(a.T) # contiguous columns (rows after .T)
                                  # appear to be typically perform better
                                  # thanks @ning chen
    return sum(np.bincount((M * a[j] + a[j+1:]).ravel(), None, M*M)
               for j in range(len(a) - 1)).reshape(M, M)

def pairs_dict(a):
    p = pairs_F(a)
    # p is a 2D table with the frequency of (y, x) at position y, x
    y, x = np.where(p)
    c = p[y, x]
    return {(yi, xi): ci for yi, xi, ci in zip(y, x, c)}

def pair_freq(a, sort=False, sort_axis=-1):
    a = np.asarray(a)
    if sort:
        a = np.sort(a, axis=sort_axis)
    res = Counter()
    for row in a:
        res.update(combinations(row, 2))
    return res


from timeit import timeit
A = [np.random.randint(0, 1000, (1000, 120)),
     np.random.randint(0, 100, (100000, 12))]
for a in A:
    print('shape:', a.shape, 'range:', a.max() + 1)
    res2 = pairs_dict(a)
    res = pair_freq(a)
    print(f'results equal: {res==res2}')
    print('bincount', timeit(lambda:pairs(a), number=10)*100, 'ms')
    print('bc(F)   ', timeit(lambda:pairs_F(a), number=10)*100, 'ms')
    print('bc->dict', timeit(lambda:pairs_dict(a), number=10)*100, 'ms')
    print('Counter ', timeit(lambda:pair_freq(a), number=4)*250,'ms')

样本运行:

shape: (1000, 120) range: 1000
results equal: True
bincount 461.14772390574217 ms
bc(F)    435.3669326752424 ms
bc->dict 932.1215840056539 ms
Counter  3473.3258984051645 ms
shape: (100000, 12) range: 100
results equal: True
bincount 89.80463854968548 ms
bc(F)    43.449611216783524 ms
bc->dict 46.470773220062256 ms
Counter  1987.6734036952257 ms

我有一个想法,代码如下。 我的代码最大的缺点是它 运行 随着列的增加非常缓慢,并且比@Paul Panzer 的代码慢。我向 Paul Panzer 道歉。

如果你想更快,就忽略num_to_items的功能。因为 (1, 1) 等于 1*2**20 + 1.

import numpy as np
from random import choice
from itertools import izip
from scipy.sparse import csr_matrix, csc_matrix
from scipy import sparse as sp


c_10 = np.array([[choice(range(1, 10)) for _ in range(3)] for _ in range(1000)])
c_1000 = np.array([[choice(range(1, 1000)) for _ in range(3)] for _ in range(1000)])

def _bit_to_items(num):
    return (num >> 20, num & 0b1111111111111111111)


def unique_bit_shit(c):
    cc = c << 20 # suppose that: 2**20 > max(c)

    dialog_mtx_1 = np.array([[1, 0, 0],
                             [1, 0, 0],
                             [0, 1, 0]])

    dialog_mtx_2 = np.array([[0, 1, 0],
                             [0, 0, 1],
                             [0, 0, 1]])

    dialog_mtx_1 = dialog_mtx_1.T
    dialog_mtx_2 = dialog_mtx_2.T

    pairs = cc.dot(dialog_mtx_1) + c.dot(dialog_mtx_2)
    pairs_num, count = np.unique(pairs, return_counts=True)
    return [(_bit_to_items(num), v) for num, v in izip(pairs_num, count)]



def _dot_to_items(num):
    # 2**20 is 1048576
    return (num / 1048576, num % 1048576) 


def unique_dot(c):
    dialog_mtx_3 = np.array([[2**20, 2**20, 0],
                             [1,     0,     2**20],
                             [0,     1,     1]])

    pairs = c.dot(dialog_mtx_3)

    pairs_num, count = np.unique(pairs, return_counts=True)
    return [(_dot_to_items(num), v) for num, v in izip(pairs_num, count)]