一对一回归
one vs all regression
我一直在回顾我在 https://github.com/jcgillespie/Coursera-Machine-Learning/tree/master/ex3 中找到的 Andrew Ng 在机器学习课程中的一个例子。该示例涉及逻辑回归和一对多分类。我对这个功能有疑问:
function [all_theta] = oneVsAll(X, y, num_labels, lambda)
%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta
%corresponds to the classifier for label i
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
% logisitc regression classifiers and returns each of these classifiers
% in a matrix all_theta, where the i-th row of all_theta corresponds
% to the classifier for label i
% Some useful variables
m = size(X, 1);
n = size(X, 2);
% You need to return the following variables correctly
all_theta = zeros(num_labels, n + 1);
% Add ones to the X data matrix
X = [ones(m, 1) X];
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
% logistic regression classifiers with regularization
% parameter lambda.
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell use
% whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
% function. It is okay to use a for-loop (for c = 1:num_labels) to
% loop over the different classes.
%
% fmincg works similarly to fminunc, but is more efficient when we
% are dealing with large number of parameters.
%
% Example Code for fmincg:
%
% % Set Initial theta
% initial_theta = zeros(n + 1, 1);
%
% % Set options for fminunc
% options = optimset('GradObj', 'on', 'MaxIter', 50);
%
% % Run fmincg to obtain the optimal theta
% % This function will return theta and the cost
% [theta] = ...
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
% initial_theta, options);
%
initial_theta = zeros(n + 1, 1);
options = optimset('GradObj', 'on', 'MaxIter', 50);
for i = 1:num_labels
c = i * ones(size(y));
fprintf('valores')
[theta] = fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), initial_theta, options);
all_theta(i,:) = theta;
end
% =========================================================================
end
我知道 lrCostFunction 采用参数:theta、X、y 和 lambda,但我无法从代码中弄清楚 t 的值来自哪里我在上面发帖;具体在这部分:
[theta] = fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), initial_theta, options);
有什么帮助吗?
fmincg
将 objective 函数的句柄作为第一个参数,在本例中是 lrCostFunction
的句柄。
如果你进入fmincg.m
,你会发现以下几行:
argstr = ['feval(f, X']; % compose string used to call function
%---Code will not enter the following loop---%
for i = 1:(nargin - 3) %this will go from 1 to 0, thus the loop is skipped
argstr = [argstr, ',P', int2str(i)];
end
% following will be executed
argstr = [argstr, ')'];
在上述代码片段的末尾,结果将是,
argstr=feval(f,X');
如果你再往前一点,你就会看到,
[f1 df1] = eval(argstr); % get function value and gradient
因此,函数句柄 f
将 运行 带有参数 X'
。所以,t=X'
,这也是有道理的。最初的 theta
将收敛,为您提供逻辑回归的最终参数向量。
其实可以代入。
for i=1 : num_labels
[theta]= fmincg (@(t)(lrCostFunction(t, X, (y == i), lambda)),initial_theta, options);
all_theta(i,:)=theta;
试试这个
for i = 1:num_labels,
[all_theta(i,:)] = fmincg (@(t)(lrCostFunction(t, X, (y == i), lambda)), initial_theta, options);
end;
你也不需要一开始就初始化all_theta
我一直在回顾我在 https://github.com/jcgillespie/Coursera-Machine-Learning/tree/master/ex3 中找到的 Andrew Ng 在机器学习课程中的一个例子。该示例涉及逻辑回归和一对多分类。我对这个功能有疑问:
function [all_theta] = oneVsAll(X, y, num_labels, lambda)
%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta
%corresponds to the classifier for label i
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
% logisitc regression classifiers and returns each of these classifiers
% in a matrix all_theta, where the i-th row of all_theta corresponds
% to the classifier for label i
% Some useful variables
m = size(X, 1);
n = size(X, 2);
% You need to return the following variables correctly
all_theta = zeros(num_labels, n + 1);
% Add ones to the X data matrix
X = [ones(m, 1) X];
% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
% logistic regression classifiers with regularization
% parameter lambda.
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell use
% whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
% function. It is okay to use a for-loop (for c = 1:num_labels) to
% loop over the different classes.
%
% fmincg works similarly to fminunc, but is more efficient when we
% are dealing with large number of parameters.
%
% Example Code for fmincg:
%
% % Set Initial theta
% initial_theta = zeros(n + 1, 1);
%
% % Set options for fminunc
% options = optimset('GradObj', 'on', 'MaxIter', 50);
%
% % Run fmincg to obtain the optimal theta
% % This function will return theta and the cost
% [theta] = ...
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
% initial_theta, options);
%
initial_theta = zeros(n + 1, 1);
options = optimset('GradObj', 'on', 'MaxIter', 50);
for i = 1:num_labels
c = i * ones(size(y));
fprintf('valores')
[theta] = fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), initial_theta, options);
all_theta(i,:) = theta;
end
% =========================================================================
end
我知道 lrCostFunction 采用参数:theta、X、y 和 lambda,但我无法从代码中弄清楚 t 的值来自哪里我在上面发帖;具体在这部分:
[theta] = fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), initial_theta, options);
有什么帮助吗?
fmincg
将 objective 函数的句柄作为第一个参数,在本例中是 lrCostFunction
的句柄。
如果你进入fmincg.m
,你会发现以下几行:
argstr = ['feval(f, X']; % compose string used to call function
%---Code will not enter the following loop---%
for i = 1:(nargin - 3) %this will go from 1 to 0, thus the loop is skipped
argstr = [argstr, ',P', int2str(i)];
end
% following will be executed
argstr = [argstr, ')'];
在上述代码片段的末尾,结果将是,
argstr=feval(f,X');
如果你再往前一点,你就会看到,
[f1 df1] = eval(argstr); % get function value and gradient
因此,函数句柄 f
将 运行 带有参数 X'
。所以,t=X'
,这也是有道理的。最初的 theta
将收敛,为您提供逻辑回归的最终参数向量。
其实可以代入。
for i=1 : num_labels
[theta]= fmincg (@(t)(lrCostFunction(t, X, (y == i), lambda)),initial_theta, options);
all_theta(i,:)=theta;
试试这个
for i = 1:num_labels,
[all_theta(i,:)] = fmincg (@(t)(lrCostFunction(t, X, (y == i), lambda)), initial_theta, options);
end;
你也不需要一开始就初始化all_theta