我怎样才能用 sklearn 做一维高斯混合的直方图?
How can I do a histogram with 1D gaussian mixture with sklearn?
我想做一个混合一维高斯的直方图作为图片。
感谢萌萌图。
我的直方图是这样的:
我有一个包含大量数据(4,000,000 个数字)的文件:
1.727182
1.645300
1.619943
1.709263
1.614427
1.522313
我使用的是比孟和正义勋爵所做的修改的后续脚本:
from matplotlib import rc
from sklearn import mixture
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
import matplotlib.ticker as tkr
import scipy.stats as stats
x = open("prueba.dat").read().splitlines()
f = np.ravel(x).astype(np.float)
f=f.reshape(-1,1)
g = mixture.GaussianMixture(n_components=3,covariance_type='full')
g.fit(f)
weights = g.weights_
means = g.means_
covars = g.covariances_
plt.hist(f, bins=100, histtype='bar', density=True, ec='red', alpha=0.5)
plt.plot(f,weights[0]*stats.norm.pdf(f,means[0],np.sqrt(covars[0])), c='red')
plt.rcParams['agg.path.chunksize'] = 10000
plt.grid()
plt.show()
当我 运行 脚本时,我有以下情节:
所以,我不知道如何放置必须存在的所有高斯函数的起点和终点。我是 python 的新手,我对使用模块的方式感到困惑。拜托,你能帮我指导我怎么做这个情节吗?
非常感谢
重塑一切。
首先,您需要重塑 f。
对于 pdf,在使用 stats.norm.pdf 之前进行整形。同样,在绘图之前进行排序和整形。
from matplotlib import rc
from sklearn import mixture
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
import matplotlib.ticker as tkr
import scipy.stats as stats
# x = open("prueba.dat").read().splitlines()
# create the data
x = np.concatenate((np.random.normal(5, 5, 1000),np.random.normal(10, 2, 1000)))
f = np.ravel(x).astype(np.float)
f=f.reshape(-1,1)
g = mixture.GaussianMixture(n_components=3,covariance_type='full')
g.fit(f)
weights = g.weights_
means = g.means_
covars = g.covariances_
plt.hist(f, bins=100, histtype='bar', density=True, ec='red', alpha=0.5)
f_axis = f.copy().ravel()
f_axis.sort()
plt.plot(f_axis,weights[0]*stats.norm.pdf(f_axis,means[0],np.sqrt(covars[0])).ravel(), c='red')
plt.rcParams['agg.path.chunksize'] = 10000
plt.grid()
plt.show()
虽然这是一个相当古老的话题,但我想提供我的看法。我相信我的回答对一些人来说更容易理解。此外,我还包括一个测试,以通过 BIC 标准检查所需数量的组件是否具有统计意义。
# import libraries (some are for cosmetics)
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator)
import astropy
from scipy.stats import norm
from sklearn.mixture import GaussianMixture as GMM
import matplotlib as mpl
mpl.rcParams['axes.linewidth'] = 1.5
mpl.rcParams.update({'font.size': 15, 'font.family': 'STIXGeneral', 'mathtext.fontset': 'stix'})
# create the data as in @Meng's answer
x = np.concatenate((np.random.normal(5, 5, 1000), np.random.normal(10, 2, 1000)))
x = x.reshape(-1, 1)
# first of all, let's confirm the optimal number of components
bics = []
min_bic = 0
counter=1
for i in range (10): # test the AIC/BIC metric between 1 and 10 components
gmm = GMM(n_components = counter, max_iter=1000, random_state=0, covariance_type = 'full')
labels = gmm.fit(x).predict(x)
bic = gmm.bic(x)
bics.append(bic)
if bic < min_bic or min_bic == 0:
min_bic = bic
opt_bic = counter
counter = counter + 1
# plot the evolution of BIC/AIC with the number of components
fig = plt.figure(figsize=(10, 4))
ax = fig.add_subplot(1,2,1)
# Plot 1
plt.plot(np.arange(1,11), bics, 'o-', lw=3, c='black', label='BIC')
plt.legend(frameon=False, fontsize=15)
plt.xlabel('Number of components', fontsize=20)
plt.ylabel('Information criterion', fontsize=20)
plt.xticks(np.arange(0,11, 2))
plt.title('Opt. components = '+str(opt_bic), fontsize=20)
# Since the optimal value is n=2 according to both BIC and AIC, let's write down:
n_optimal = opt_bic
# create GMM model object
gmm = GMM(n_components = n_optimal, max_iter=1000, random_state=10, covariance_type = 'full')
# find useful parameters
mean = gmm.fit(x).means_
covs = gmm.fit(x).covariances_
weights = gmm.fit(x).weights_
# create necessary things to plot
x_axis = np.arange(-20, 30, 0.1)
y_axis0 = norm.pdf(x_axis, float(mean[0][0]), np.sqrt(float(covs[0][0][0])))*weights[0] # 1st gaussian
y_axis1 = norm.pdf(x_axis, float(mean[1][0]), np.sqrt(float(covs[1][0][0])))*weights[1] # 2nd gaussian
ax = fig.add_subplot(1,2,2)
# Plot 2
plt.hist(x, density=True, color='black', bins=np.arange(-100, 100, 1))
plt.plot(x_axis, y_axis0, lw=3, c='C0')
plt.plot(x_axis, y_axis1, lw=3, c='C1')
plt.plot(x_axis, y_axis0+y_axis1, lw=3, c='C2', ls='dashed')
plt.xlim(-10, 20)
#plt.ylim(0.0, 2.0)
plt.xlabel(r"X", fontsize=20)
plt.ylabel(r"Density", fontsize=20)
plt.subplots_adjust(wspace=0.3)
plt.show()
plt.close('all')
我想做一个混合一维高斯的直方图作为图片。
感谢萌萌图。
我的直方图是这样的:
我有一个包含大量数据(4,000,000 个数字)的文件:
1.727182
1.645300
1.619943
1.709263
1.614427
1.522313
我使用的是比孟和正义勋爵所做的修改的后续脚本:
from matplotlib import rc
from sklearn import mixture
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
import matplotlib.ticker as tkr
import scipy.stats as stats
x = open("prueba.dat").read().splitlines()
f = np.ravel(x).astype(np.float)
f=f.reshape(-1,1)
g = mixture.GaussianMixture(n_components=3,covariance_type='full')
g.fit(f)
weights = g.weights_
means = g.means_
covars = g.covariances_
plt.hist(f, bins=100, histtype='bar', density=True, ec='red', alpha=0.5)
plt.plot(f,weights[0]*stats.norm.pdf(f,means[0],np.sqrt(covars[0])), c='red')
plt.rcParams['agg.path.chunksize'] = 10000
plt.grid()
plt.show()
当我 运行 脚本时,我有以下情节:
所以,我不知道如何放置必须存在的所有高斯函数的起点和终点。我是 python 的新手,我对使用模块的方式感到困惑。拜托,你能帮我指导我怎么做这个情节吗?
非常感谢
重塑一切。 首先,您需要重塑 f。 对于 pdf,在使用 stats.norm.pdf 之前进行整形。同样,在绘图之前进行排序和整形。
from matplotlib import rc
from sklearn import mixture
import matplotlib.pyplot as plt
import numpy as np
import matplotlib
import matplotlib.ticker as tkr
import scipy.stats as stats
# x = open("prueba.dat").read().splitlines()
# create the data
x = np.concatenate((np.random.normal(5, 5, 1000),np.random.normal(10, 2, 1000)))
f = np.ravel(x).astype(np.float)
f=f.reshape(-1,1)
g = mixture.GaussianMixture(n_components=3,covariance_type='full')
g.fit(f)
weights = g.weights_
means = g.means_
covars = g.covariances_
plt.hist(f, bins=100, histtype='bar', density=True, ec='red', alpha=0.5)
f_axis = f.copy().ravel()
f_axis.sort()
plt.plot(f_axis,weights[0]*stats.norm.pdf(f_axis,means[0],np.sqrt(covars[0])).ravel(), c='red')
plt.rcParams['agg.path.chunksize'] = 10000
plt.grid()
plt.show()
虽然这是一个相当古老的话题,但我想提供我的看法。我相信我的回答对一些人来说更容易理解。此外,我还包括一个测试,以通过 BIC 标准检查所需数量的组件是否具有统计意义。
# import libraries (some are for cosmetics)
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator)
import astropy
from scipy.stats import norm
from sklearn.mixture import GaussianMixture as GMM
import matplotlib as mpl
mpl.rcParams['axes.linewidth'] = 1.5
mpl.rcParams.update({'font.size': 15, 'font.family': 'STIXGeneral', 'mathtext.fontset': 'stix'})
# create the data as in @Meng's answer
x = np.concatenate((np.random.normal(5, 5, 1000), np.random.normal(10, 2, 1000)))
x = x.reshape(-1, 1)
# first of all, let's confirm the optimal number of components
bics = []
min_bic = 0
counter=1
for i in range (10): # test the AIC/BIC metric between 1 and 10 components
gmm = GMM(n_components = counter, max_iter=1000, random_state=0, covariance_type = 'full')
labels = gmm.fit(x).predict(x)
bic = gmm.bic(x)
bics.append(bic)
if bic < min_bic or min_bic == 0:
min_bic = bic
opt_bic = counter
counter = counter + 1
# plot the evolution of BIC/AIC with the number of components
fig = plt.figure(figsize=(10, 4))
ax = fig.add_subplot(1,2,1)
# Plot 1
plt.plot(np.arange(1,11), bics, 'o-', lw=3, c='black', label='BIC')
plt.legend(frameon=False, fontsize=15)
plt.xlabel('Number of components', fontsize=20)
plt.ylabel('Information criterion', fontsize=20)
plt.xticks(np.arange(0,11, 2))
plt.title('Opt. components = '+str(opt_bic), fontsize=20)
# Since the optimal value is n=2 according to both BIC and AIC, let's write down:
n_optimal = opt_bic
# create GMM model object
gmm = GMM(n_components = n_optimal, max_iter=1000, random_state=10, covariance_type = 'full')
# find useful parameters
mean = gmm.fit(x).means_
covs = gmm.fit(x).covariances_
weights = gmm.fit(x).weights_
# create necessary things to plot
x_axis = np.arange(-20, 30, 0.1)
y_axis0 = norm.pdf(x_axis, float(mean[0][0]), np.sqrt(float(covs[0][0][0])))*weights[0] # 1st gaussian
y_axis1 = norm.pdf(x_axis, float(mean[1][0]), np.sqrt(float(covs[1][0][0])))*weights[1] # 2nd gaussian
ax = fig.add_subplot(1,2,2)
# Plot 2
plt.hist(x, density=True, color='black', bins=np.arange(-100, 100, 1))
plt.plot(x_axis, y_axis0, lw=3, c='C0')
plt.plot(x_axis, y_axis1, lw=3, c='C1')
plt.plot(x_axis, y_axis0+y_axis1, lw=3, c='C2', ls='dashed')
plt.xlim(-10, 20)
#plt.ylim(0.0, 2.0)
plt.xlabel(r"X", fontsize=20)
plt.ylabel(r"Density", fontsize=20)
plt.subplots_adjust(wspace=0.3)
plt.show()
plt.close('all')