通过不同列的重复值之间的条件

Conditional between duplicated values through different columns

当一个客户有多个订阅时,它就是重复的。 我想为整个客户状态生成一个 new_status,而不是为每个订阅生成一个 new_status: 给已重新激活订阅的客户 以及已取消一项订阅但仍有另一项有效订阅的客户。

df:

Customer | Status  | Canceled_at | Created  | New_status
 X       | Active  |             |8/9/2017  |
 X       |Canceled |  8/3/2017   |6/19/2017 |             
 Y       | Active  |             |2/13/2019 |
 Y       |Canceled | 11/28/2018  |10/14/2018|
 Z       | Active  |             |3/29/2018 |
 Z       |Canceled | 8/8/2018    |7/10/2018 |
 A       |Canceled | 9/2/2018    |7/10/2018 |          
 A       |Canceled | 9/29/2018   |7/12/2018 |
 A       |Active   |             |5/31/2018 |

这些情况的条件是: 如果取消副本的 'canceled_at' 日期 > 活动的 'created' 日期:新_status 将是 'Downgrade' 如果取消副本的 'canceled_at' 日期 < 'created' 日期 活动:new_status 将是 'Reactivate'

期望的输出:

Customer | Status  | Canceled_at | Created  | New_status
 X       | Active  |             |8/9/2017  |Reactivate
 X       |Canceled |  8/3/2017   |6/19/2017 |Reactivate              
 Y       | Active  |             |2/13/2019 |Reactivate
 Y       |Canceled | 11/28/2018  |10/14/2018|Reactivate
 Z       | Active  |             |3/29/2018 |Downgrade
 Z       |Canceled | 8/8/2018    |7/10/2018 |Downgrade
 A       |Canceled | 9/2/2018    |7/10/2018 |Downgrade           
 A       |Canceled | 9/29/2018   |7/12/2018 |Downgrade
 A       |Active   |             |5/31/2018 |Downgrade

我太新了,无法发表评论,但我需要更多信息,为什么 'Y' 客户重新激活?也许我不明白你的解释,因为客户 'A' 处于类似情况,而你给了它 'Downgrade'。也许只是 re-type 你的问题,但假装它是给一个 8 岁的孩子阅读的(我)。

这是您想要的代码,它有效:

#convert columns to dates
df['Canceled_at'] = pd.to_datetime(df['Canceled_at'])
df['Created'] = pd.to_datetime(df['Created'])

#make customer a list so we can loop through it
customer = list(df['Customer'].drop_duplicates())

#super awesome for loop that give us the largest date (this is the part where maybe your logic is different than what I read it as)
for c in customer:
    df.loc[(df['Customer'] == c), 'Most Recent Cancel'] = df.loc[(df['Customer'] == c)]['Canceled_at'].max()
    df.loc[(df['Customer'] == c), 'Most Recent Created'] = df.loc[(df['Customer'] == c)]['Created'].max()

#Make 'New_status' column
df.loc[(df['Most Recent Created'] > df['Most Recent Cancel']), 'New_status'] = 'Reactivate'
df.loc[(df['New_status'] != 'Reactivate'), 'New_status'] = 'Downgrade'