将每一行乘以不同的旋转矩阵

Multiply each row by different rotation matrix

此函数将 posen 行中的每一行乘以不同的旋转矩阵。是否可以通过使用旋转矩阵的 3d 张量来避免循环?

def transform(ref, pose):
    n, d = pose.shape
    p = ref[:, :d].copy()
    c = np.cos(ref[:, 2])
    s = np.sin(ref[:, 2])

    for i in range(n):
        p[i,:2] += pose[i,:2].dot(np.array([[c[i], s[i]], [-s[i], c[i]]]))

    return p

这是 np.einsum -

# Setup 3D rotation matrix
cs = np.empty((n,2,2))
cs[:,0,0] = c
cs[:,1,1] = c
cs[:,0,1] = s
cs[:,1,0] = -s

# Perform 3D matrix multiplications with einsum
p_out = ref[:, :d].copy()
p_out[:,:2] += np.einsum('ij,ijk->ik',pose[:,:2],cs)

或者,将 c 的两个分配步骤替换为另一个 einsum -

np.einsum('ijj->ij',cs)[...] = c[:,None]

使用 optimize 标志和 np.einsum 中的 True 值来利用 BLAS

或者,我们可以使用 np.matmul/@ operator in Python 3.x 来替换 einsum 部分 -

p_out[:,:2] += np.matmul(pose[:,None,:2],cs)[:,0]