根据布尔列中的连续值聚合 tibble
Aggregate a tibble based on a consecutive values in a boolean column
我遇到了一个相当简单的问题,但我正在努力寻找不需要大量代码和复杂循环的解决方案。
我有一个每小时时间序列数据集的摘要 table,df
,其中每个观测值都属于一个组。
我想根据摘要 table 中的布尔列合并其中一些组。
布尔列 merge_with_next
指示给定组是否应与下一组(向下一行)合并。
合并 通过更新 end
、值和删除行有效地发生:
library(dplyr)
# Demo data
df <- tibble(
group = 1:12,
start = seq.POSIXt(as.POSIXct("2019-01-01 00:00"), as.POSIXct("2019-01-12 00:00"), by = "1 day"),
end = seq.POSIXt(as.POSIXct("2019-01-01 23:59"), as.POSIXct("2019-01-12 23:59"), by = "1 day"),
merge_with_next = rep(c(TRUE, TRUE, FALSE), 4)
)
df
#> # A tibble: 12 x 4
#> group start end merge_with_next
#> <int> <dttm> <dttm> <lgl>
#> 1 1 2019-01-01 00:00:00 2019-01-01 23:59:00 TRUE
#> 2 2 2019-01-02 00:00:00 2019-01-02 23:59:00 TRUE
#> 3 3 2019-01-03 00:00:00 2019-01-03 23:59:00 FALSE
#> 4 4 2019-01-04 00:00:00 2019-01-04 23:59:00 TRUE
#> 5 5 2019-01-05 00:00:00 2019-01-05 23:59:00 TRUE
#> 6 6 2019-01-06 00:00:00 2019-01-06 23:59:00 FALSE
#> 7 7 2019-01-07 00:00:00 2019-01-07 23:59:00 TRUE
#> 8 8 2019-01-08 00:00:00 2019-01-08 23:59:00 TRUE
#> 9 9 2019-01-09 00:00:00 2019-01-09 23:59:00 FALSE
#> 10 10 2019-01-10 00:00:00 2019-01-10 23:59:00 TRUE
#> 11 11 2019-01-11 00:00:00 2019-01-11 23:59:00 TRUE
#> 12 12 2019-01-12 00:00:00 2019-01-12 23:59:00 FALSE
# Desired result
desired <- tibble(
group = c(1, 4, 7, 9),
start = c("2019-01-01 00:00", "2019-01-04 00:00", "2019-01-07 00:00", "2019-01-10 00:00"),
end = c("2019-01-03 23:59", "2019-01-06 23:59", "2019-01-09 23:59", "2019-01-12 23:59")
)
desired
#> # A tibble: 4 x 3
#> group start end
#> <dbl> <chr> <chr>
#> 1 1 2019-01-01 00:00 2019-01-03 23:59
#> 2 4 2019-01-04 00:00 2019-01-06 23:59
#> 3 7 2019-01-07 00:00 2019-01-09 23:59
#> 4 9 2019-01-10 00:00 2019-01-12 23:59
由 reprex 包 (v0.2.1) 创建于 2019-03-22
我正在寻找一个不涉及大量助手 table 和循环的简短而清晰的解决方案。 group
列中的最终值并不重要,我只关心结果中的 start
和 end
列。
我们可以使用 dplyr
并根据每次 TRUE
值出现在 merge_with_next
列和 select first
值出现在 [=15] 中创建组=] 和每个组的 end
列中的 last
值。
library(dplyr)
df %>%
group_by(temp = cumsum(!lag(merge_with_next, default = TRUE))) %>%
summarise(group = first(group),
start = first(start),
end = last(end)) %>%
ungroup() %>%
select(-temp)
# group start end
# <int> <dttm> <dttm>
#1 1 2019-01-01 00:00:00 2019-01-03 23:59:00
#2 4 2019-01-04 00:00:00 2019-01-06 23:59:00
#3 7 2019-01-07 00:00:00 2019-01-09 23:59:00
#4 10 2019-01-10 00:00:00 2019-01-12 23:59:00
我遇到了一个相当简单的问题,但我正在努力寻找不需要大量代码和复杂循环的解决方案。
我有一个每小时时间序列数据集的摘要 table,df
,其中每个观测值都属于一个组。
我想根据摘要 table 中的布尔列合并其中一些组。
布尔列 merge_with_next
指示给定组是否应与下一组(向下一行)合并。
合并 通过更新 end
、值和删除行有效地发生:
library(dplyr)
# Demo data
df <- tibble(
group = 1:12,
start = seq.POSIXt(as.POSIXct("2019-01-01 00:00"), as.POSIXct("2019-01-12 00:00"), by = "1 day"),
end = seq.POSIXt(as.POSIXct("2019-01-01 23:59"), as.POSIXct("2019-01-12 23:59"), by = "1 day"),
merge_with_next = rep(c(TRUE, TRUE, FALSE), 4)
)
df
#> # A tibble: 12 x 4
#> group start end merge_with_next
#> <int> <dttm> <dttm> <lgl>
#> 1 1 2019-01-01 00:00:00 2019-01-01 23:59:00 TRUE
#> 2 2 2019-01-02 00:00:00 2019-01-02 23:59:00 TRUE
#> 3 3 2019-01-03 00:00:00 2019-01-03 23:59:00 FALSE
#> 4 4 2019-01-04 00:00:00 2019-01-04 23:59:00 TRUE
#> 5 5 2019-01-05 00:00:00 2019-01-05 23:59:00 TRUE
#> 6 6 2019-01-06 00:00:00 2019-01-06 23:59:00 FALSE
#> 7 7 2019-01-07 00:00:00 2019-01-07 23:59:00 TRUE
#> 8 8 2019-01-08 00:00:00 2019-01-08 23:59:00 TRUE
#> 9 9 2019-01-09 00:00:00 2019-01-09 23:59:00 FALSE
#> 10 10 2019-01-10 00:00:00 2019-01-10 23:59:00 TRUE
#> 11 11 2019-01-11 00:00:00 2019-01-11 23:59:00 TRUE
#> 12 12 2019-01-12 00:00:00 2019-01-12 23:59:00 FALSE
# Desired result
desired <- tibble(
group = c(1, 4, 7, 9),
start = c("2019-01-01 00:00", "2019-01-04 00:00", "2019-01-07 00:00", "2019-01-10 00:00"),
end = c("2019-01-03 23:59", "2019-01-06 23:59", "2019-01-09 23:59", "2019-01-12 23:59")
)
desired
#> # A tibble: 4 x 3
#> group start end
#> <dbl> <chr> <chr>
#> 1 1 2019-01-01 00:00 2019-01-03 23:59
#> 2 4 2019-01-04 00:00 2019-01-06 23:59
#> 3 7 2019-01-07 00:00 2019-01-09 23:59
#> 4 9 2019-01-10 00:00 2019-01-12 23:59
由 reprex 包 (v0.2.1) 创建于 2019-03-22
我正在寻找一个不涉及大量助手 table 和循环的简短而清晰的解决方案。 group
列中的最终值并不重要,我只关心结果中的 start
和 end
列。
我们可以使用 dplyr
并根据每次 TRUE
值出现在 merge_with_next
列和 select first
值出现在 [=15] 中创建组=] 和每个组的 end
列中的 last
值。
library(dplyr)
df %>%
group_by(temp = cumsum(!lag(merge_with_next, default = TRUE))) %>%
summarise(group = first(group),
start = first(start),
end = last(end)) %>%
ungroup() %>%
select(-temp)
# group start end
# <int> <dttm> <dttm>
#1 1 2019-01-01 00:00:00 2019-01-03 23:59:00
#2 4 2019-01-04 00:00:00 2019-01-06 23:59:00
#3 7 2019-01-07 00:00:00 2019-01-09 23:59:00
#4 10 2019-01-10 00:00:00 2019-01-12 23:59:00